
QUEEN’S UNIVERSITY AT KINGSTON

DOCTORAL THESIS

Decentralized Problems of Discrete-Event Systems:

Epistemic Reasoning and Graph Representation

Author:
K. RITSUKA

Supervisor:
PROF. KAREN RUDIE

Thesis Committee:
PROF. JOSHUA MAR-
SHALL
PROF. XIAODAN ZHU
PROF. CHRISTIAN MUISE
PROF. FENG LIN

A thesis submitted to the Graduate Program
in Electrical and Computer Engineering

in conformity with the requirements
for the degree of Doctor of Philosophy

July 2023

Copyright © K. Ritsuka, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License. To view a copy of this license visit:

https://creativecommons.org/licenses/by-nc-nd/4.0/.

https://queensu.ca/
https://ritsuka.moe
https://www.ece.queensu.ca/people/K-Rudie/
https://creativecommons.org/licenses/by-nc-nd/4.0/

This document is written with Visual Studio Code, set in Bitstream Charter, compiled
with pdfTEX and biber .

This document uses the LATEX (both 2ε and 3) macro packages. The LATEX docu-
ment class is KOMA-Script. Other macro packages used are: l3keys2e, etoolbox,
fontenc, inputenc, microtype, geometry, blankpage, mathtools, amssymb, delarray,
empheq, bm, xparse, mathalpha, extdash, biblatex, enumitem, tasks, colortbl,
multirow, placeins, flafter, float, subcaption, hyperref, bookmark, xcolor,
normalcolor, glossaries-extra, ntheorem, cleveref, graphicx, tikz, hologo,
pdfpages, ctex, and mylatexformat.

This document is compiled with \ACtrue\Twosidetrue\Letterfalse\Darkfalse.

https://code.visualstudio.com/
https://ctan.org/pkg/charter
https://www.tug.org/applications/pdftex/
https://biblatex-biber.sourceforge.net/
https://www.latex-project.org/
http://www.komascript.de/

To Mom and Dad

To Karen Rudie,
who is philo-sophy-ical

致愛人

桥霜

Abstract

This thesis provides modelling formalisms for decentralized problems of discrete-
event systems for better derivation of problem solvability and solution constructions
and for comparison of one decentralized architecture with another.

The thesis establishes equivalence between three classes of problems— observation
problems, diagnosis problems, and control problems— in terms of Turing reduction.
Through the reduction, the thesis demonstrates that the solvability of the control
problems is undecidable, alongside the similar result known for the other two
classes of problems. Moreover, since the observation problems are formally simpler,
the thesis advocates focusing research effort on these problems whenever suitable,
i.e., when the results can transfer to the other two classes of problems via the
reduction.

The thesis then puts into uniform frameworks solutions to decentralized problems,
characterized by their architectures. Two such frameworks have been proposed, one
formalized using epistemic logic, while the other in terms of graph theory. Both
frameworks capture the essential indistinguishability relations.

The epistemic logic formalism is primarily suited for methodologically deriving
problem solvability conditions and solution constructions under a given architecture.
The methodology promotes coupling knowledge and action, so that a problem
solvability condition directly expresses what knowledge an agent needs to perform
its actions. This contrasts with the traditional case-by-case, ad hoc approach. The
resulting epistemic expressions are closer to human reasoning than the traditionally-
used predicate logic. We provide epistemic expressions for well-known problem
solvability conditions. Being able to circumscribe a collection of such conditions in a
uniform and concise modelling paradigm, we are able to refine the known hierarchy
of such conditions in a more concise manner.

The graph theoretical formalism provides a direct approach to compare architectures.
This contrasts with the traditional approach in which one first derives problem
solvability conditions for the architectures to be compared, and then shows that
one condition (strictly) implies another. The approach also gives a visually intuitive
model for understanding why a given architecture is superior to another.

i

Acknowledgements

I would like to express my utmost gratitude to my supervisor, Prof. Karen Rudie. For
four years, she has provided supervision and guidance while giving me the freedom
to pursue my ideas. I fear that I have not been a quite docile student, yet she showed
me much patience, and often persuaded rather than instructed. Her support and
encouragement, both within my research work and within my life, ensured the final
quality of this research.

I would also like to thank the members my thesis committee, Prof. Joshua Marshall,
Prof. Xiaodan Zhu, Prof. Christian Muise, and Prof. Feng Lin, for their careful
examination and critical comments of my dissertation.

The research described in this thesis was undertaken at Queen’s University, which
is situated on traditional Anishinaabe and Haudenosaunee territory. The research
was inspired by and supported through an NSERC CRD-DND project with General
Dynamics Land Systems–Canada and Defence Research and Development Canada.

I would like to appreciate those who provided me education, demonstration, and
inspiration. To those at Queen’s University, especially Prof. Naraig Manjikian, Prof.
Karen Rudie, Prof. Kai Salomaa, Prof. Jana Dunfield. To Prof. William Farmer at
McMaster University. To those at my high school, especially Mr. James Smith.

Appreciation also goes to Student Wellness Services of Queen’s University, Queen’s
University Library, and City of Kingston.

To my friends, especially申畅，刘亦桐，严博琛，林霄峰，周雯芯．To王桦．

To my extended family, especially my parents,里葆玲 and 晏刚 , and my paternal

grandmother, 马如明．

To my love,桥霜．

Queen’s University, Kingston K. Ritsuka
July 2023 晏雲杉

iii

Contents

Abstract i

Acknowledgements iii

List of Figures ix

List of Symbols xi

List of Abbreviations xv

1 Introduction 1

2 Preliminaries 5
2A Discrete-Event Systems . 5
2A1 Decentralized Supervisory Control with Partial Observations 6
2B Epistemic Logic . 10
2B1 Epistemic Logic in DSCOP . 13
References . 15

3 Epistemic Interpretations of Decentralized Discrete-Event System
Problems 17

3A Introduction . 17
3B Co-observability Conditions and Their Strong Versions 18
3C Epistemic Expressions of decentralized control conditions 19
3C1 C&P co-observability . 20
3C2 D&A co-observability . 25
3C3 Strong C&P co-observability . 26
3C4 Strong D&A co-observability . 29
3C5 C&P∧D&A co-observability . 29
3C6 C&P∨D&A co-observability . 31
3C7 Local Observability . 39
3C8 Strong Local Observability . 41
3C9 Strong C&P∧D&A co-observability . 42
3C10 Weak Co-normality . 43
3C11 Summary and Discussion . 45
3D Discussion on Closure Under Set Union 47
3D1 Strong C&P∧D&A Co-observability is not Closed under Set Union . . . 47
3D2 Local Observability is not Closed under Set Union 50
3D3 Strong Local Observability is Closed under Set Union 53
3D4 Revisiting Strong C&P∧D&A Co-observability 53

v

Contents

3E Conclusion . 55
References . 56

4 Do What You Know: Coupling Knowledge with Action in Discrete-
Event Systems 59

4A Introduction . 59
4B Direct Derivation of Supervisor Existence and Realization for Condi-

tional Architecture . 61
4B1 A Visualization to Aid in the Revision of Problem Requirements 72
4C Conclusion . 75
References . 76

5 Unification of the Conditional Architecture and Inference-Based
Architectures 79

References . 83

6 A Visualization of Inference-Based Supervisory Control in Discrete-
Event Systems 85

6A Introduction . 85
6B Inference-based Architecture . 86
6C Visualization . 88
6D Conclusions . 95
References . 96

7 Equivalence of Decentralized Observation, Diagnosis, and Control
Problems in Discrete-event Systems 99

7A Introduction . 99
7B Observation Problem . 100
7C Diagnosis Problem . 101
7C1 Equivalence of Diagnosis Problems and Observation Problems 102
7D Control Problem . 103
7D1 Equivalence of Control Problems and Observation Problems 103
References . 106

8 A Uniform Treatment of Architectures in Decentralized Discrete-
Event Systems 109

8A Introduction . 109
8B Decentralized Problems . 110
8C A Uniform Approach to Derive Problem Solvability Characterization

from a Given Fusion Rule . 112
8D A Uniform Approach to Compare Fusion Rules 118
8E Conclusion . 123
References . 124

9 Discussion 127

vi

Contents

Bibliography I

vii

List of Figures

2.1 Architecture of Decentralized Control of DES 8

3.2 Lattice of some co-observability conditions and related variations . . 46
3.3 Example demonstrating that strong C&P∧D&A is not closed under

set union . 49
3.4 Example demonstrating that local observability is not closed under

set union . 52

4.1 A non-inference-observable language 74

5.1 Lattice of inference-based architectures 82

6.1 The partially ordered set of control decision in the inference-based
architecture . 87

6.2 Plant G for running example throughout Chapter 6 88
6.3 Automaton G′ for running example throughout Chapter 6 88
6.4 Tabular representation of G′ in Fig. 6.3 89
6.5 Fig. 6.4 after the preprocessing to remove irrelevant states, i.e., step

0 of the algorithm on the example. 90
6.6 Step 1 of the algorithm on the example. 92
6.7 Complete trace of the algorithm running on the example. 93
6.8 A situation where the control decision abstain is issued. 94

7.1 Distinction between open-loop systems and close-loop systems 99

8.1 Example of an observation graph . 113
8.2 Decision graph for the conjunctive architecture. 114
8.3 Graph morphism from the observation graph in Fig. 8.1 to the deci-

sion graph in Fig. 8.2. 116
8.4 An observation graph that is isomorphic to the decision graph in

Fig. 8.2. 120
8.5 Decision graph for the C&P∧D&A architecture. 121
8.6 Graph morphism from the decision graph for the C&P∧D&A architec-

ture (bottom) to the decision graph for the C&P architecture (top). . 121
8.7 Alternative decision graph for the conjunctive architecture. 122
8.8 Decision graph for the conjunctive architecture recalled in the left,

with the decision graph for the disjunctive architecture in the right. 123

ix

List of Symbols

|= sematics of epistemic formulae 12
∼ accessibility relation that is a partial equivalence

relation (except in Chapter 8)
14

≃ accessibility relation that is an equivalence relation 14
⟨g1, . . . , gn⟩ broadcasting application 111
(g1, . . . , gn) element-wise application 111

CD set of control decisions 7
Con class of control problems 103
C(L,K,Σi,o,Σi,c) an instance of control problem 103

d σ can be disabled 45
d σ must be disabled 45
δ transition function 5
(D,∼) decision graph 113
D as an abbreviation of (D,∼) 113
Dx class of diagnosis problems 102
D(L,Σi,o, σf ,m) an instance of diagnosis problem 102

e σ can be enabled 45
e σ must be enabled 45
ε the empty string 5
[·] (generalized) equivalence class 14
Eϕ everyone knows ϕ 45
E automaton specification of the legal language, a

sub-automaton of G
9

fi the i-th agent in N 6
fN joint supervision/observation 7
fN/G closed loop system 7

G A finite-state automaton, usually the plant 5
Gobs observer 13
G′ G×Gobs

1 × · · · ×Gobs
n 13

I Kripke structure (frame) 11

K legal language 100
Kiϕ agent i knows ϕ 12

xi

List of Symbols

K0
i σd Kiσd 63

K0
i σe Kiσe 63

K1
i σd Ki(σe! ⇒ Oσe) 63

K1
i σe Ki(σd! ⇒ Oσd) 63

L physically possible language (when occurring
alongside K)

100

L(·) language recognized by given automaton 5
(L,∼) observation graph 112
L as an abbreviation of (L,∼) (only in Chapter 8) 112

n number of agents in N 6
Nσ set of agents controlling σ 6
N set of agents 6

Oϕ someone (other than i, given by the context)
knows ϕ

45

Obs class of observation problems 101
O(L,K,Σi,o) an instance of observation problem 101

P power set 13
Pi i-th projection/observation function 6
Pi(s) = Pi(s

′) s is indistinguishable from s′ to agent i

q a typical automaton state in Q.
q0 initial state 5
Q set of states 5

s a typical string in Σ∗, used to represent a sequence
of events

σ a typical letter in Σ, used to represent an event
σE σ is legal 14
σG σ is physically possible 14
σd σ can be disabled 62
σe σ can be enabled 62
σ∗ ∗ is to be chosen from e and d 63
σd! σ must be disabled 62
σe! σ must be enabled 62
Sϕ someone knows ϕ 45
Σ alphabet, typically stands for set of possible events 5
Σc controllable events 6
Σi,c i-th set of controllable events 6
Σi,o i-th set of observable events 6
Σo observable events 6

xii

List of Symbols

Σ∗ set of all strings over Σ 5
Σuc uncontrollable events 6
Σuo unobservabble events 6

w a world in a Kripke structure
we the “environment” component of w 13

xiii

List of Abbreviations

C&P Conjunctive and Permissive 18

D&A Disjunctive and Anti-permissive 18
DES discrete-event systems 1
DSCOP Decentralized Supervisory Control and Observa-

tion Problem
9

FSA finite state automaton 5

xv

1 Introduction

This thesis establishes two formal modelling frameworks for studying the observation
problems of discrete-event systems (DES).

The research is motivated by a research collaboration with General Dynamics
Land Systems Canada (GDLS-C) and Defence Research and Development Canada
(DRDC), where we were interested in maintaining secrecy in the operation of
a group of autonomous agents. At that time, we inspected one of the methods
to maintain secrecy: decentralized supervisory control. We noticed that, while
the problem of decentralized supervisory control has been partially solved under
numerous architectures [Cie+88; RW92; PKK97; YL02; RR00; YL04; RR07; KT05;
KC18; CK08a; CK08b; CK11], there is no proof or even indication for any of these
architectures to be the most general. Specifically, an architecture later in the forgoing
list solves more problems than one earlier in the list, while the list is not known to
stop from growing. An interesting incidence is that Yoo and Lafortune [YL02] called
their architecture the “general architecture” [YL02], which subsumes the three
architectures listed before it. However as we are seeing now, many architectures
that are more “general” have come thereafter.

Moreover, as the list of architectures grows, the formalisms of the new architectures
become more and more complicated. First, it is becoming more difficult to compare
new architectures. In addition to the complex specifications of the architectures, the
traditional approach is indirect: one has to derive problem solvability conditions for
the architectures and compare the conditions instead. Then, all existing problem
solvability conditions seem to be derived in a case-by-case, ad-hoc manner, with no
uniform methodology. Consequently, it has become harder to verify such conditions
for more complicated architectures, let alone to derive the conditions.

The thesis addresses the issues above by providing two unifying frameworks, one in
terms of epistemic logic and the other based on graph theory.

Our epistemic logic formalism provides a concise and intuitive language compared
to the currently used predicate logic language in describing multi-agent behaviour
under partial observation. With this formalism, the thesis advocates a methodology
of linking knowledge and action, which allows us to see easily what knowledge
an agent must possess to achieve the desired control strategy. This methodology
yielded more concise and intuitive expressions for problem solvability conditions
of various existing architectures. The effort yielded a refined hierarchy of existing
architectures, both in the sense that the conditions are put in a unified language,
from which comparisons fall out, and that it allowed more existing architectures to

1

1 Introduction

be positioned easily in the hierarchy.

Then, an alternative, graph-theoretical framework for decentralized problems is
proposed. This framework circumvents the indirect approach to compare two
architectures by providing a direct one.

Finally, it should be noted that while the discussion above is articulated in the
context of decentralized supervisory control problems, they apply to decentralized
observation problems and decentralized diagnosis problems as well. In fact, due
to the equivalence between the three classes of problems established by this thesis,
some of the results mentioned above were achieved by studying the formally simpler
observation problems instead.

The thesis is organized as follows. The thesis begins by unifying architectures for
control problems under the umbrella formalism of epistemic logic.

• Chapter 2 presents essential definitions.

• Chapter 3 puts some decentralized control architectures into a uniform frame-
work of epistemic logic.

• Chapter 4 extends Chapter 3 by adding the conditional architecture into the
framework. In the meantime, Chapter 4 demonstrates that with epistemic logic,
problem solvability conditions and solutions can be derived systematically.

• Chapter 5 formally unifies the conditional architecture with the inference-
based architecture.

• Chapter 6 provides a visual alternative to the epistemic logic formalism.

The thesis then proceeds to Chapter 7, where we demonstrate that observation
problems are equivalent to control problems as well as to diagnosis problems. The
result presented here indicates that results in Chapters 3, 4 and 6 can be easily
adapted to the observation problems. Furthermore, the equivalence directly entails
unsolvability of the control problems in the general case.

Chapter 8 proposes a graph-theoretic translation of the epistemic logic formalism
of the unifying framework. The chapter promotes the graph-theoretic formalism
primarily as a direct approach for comparing architectures

Finally, Chapter 9 summarizes the thesis.

Some of the chapters are published:

2

Chapter 3
K. Ritsuka and Karen Rudie. “Epistemic interpretations of decentralized
discrete-event system problems”. In: Discrete Event Dynamic Systems 32.3
(June 2022), pp. 359–398. DOI: 10.1007/s10626-022-00363-7

Chapter 4
K. Ritsuka and K. Rudie. Do What You Know: Coupling Knowledge with Action
in Discrete-Event Systems. Submitted for publication. 2023

An old draft is available as arXiv:2108.02000. This preprint version differs
substantially from the current version submitted for peer-review.

Chapter 6
K. Ritsuka and Karen Rudie. “A Visualization of Inference-Based Supervisory
Control in Discrete-Event Systems”. In: 2021 60th IEEE Conference on Decision
and Control (CDC). IEEE, Dec. 2021. DOI: 10.1109/cdc45484.2021.9683210

Chapter 7 An old, significantly different version was available on arXiv, which does
not include discussion on diagnosis problems.
K. Ritsuka and Karen Rudie. A correspondence between control and observation
problems in decentralized discrete-event systems. 2022. arXiv: 2204.10792
[eess.SY]

Chapter 8
K. Ritsuka and Karen Rudie. A Uniform Treatment of Architectures and Fusion
Rules in Decentralized Discrete-Event Systems. 2022. arXiv: 2210 . 16511
[eess.SY]

3

https://doi.org/10.1007/s10626-022-00363-7
https://arxiv.org/abs/2108.02000
https://doi.org/10.1109/cdc45484.2021.9683210
https://arxiv.org/abs/2204.10792
https://arxiv.org/abs/2204.10792
https://arxiv.org/abs/2210.16511
https://arxiv.org/abs/2210.16511

2 Preliminaries

The work in this thesis uses discrete-event system models and also epistemic logic
as a language to describe supervisory control. Therefore, in this chapter we provide
a brief summary of the necessary concepts from each domain.

2A Discrete-Event Systems

A discrete-event system is a system with finite and discrete state space, which
executes actions and changes its internal state according to only its current state.
We call the occurrence of an action an event. We consider the system’s behaviours
to be all finite sequences of events the system can generate from a certain initial
state.

Formally we define discrete-event systems following Wonham and Cai [WC18] and
Cassandras and Lafortune [CL07].

Definition 2A.1
Denote a plant modelled as a finite state automaton (FSA) by

G = (Σ, Q, δ, q0)

where Σ is a finite set of events, Q a finite set of states, δ ⊆ Q×Σ×Q the transition
relation, and q0 ∈ Q the unique initial state.

Without loss of generality, it is assumed that δ is univalent and can be seen as a
partial function δ : Q×Σ ↛ Q. We write δ(p, σ) = q for the unique q s.t. (p, σ, q) ∈ δ
if such q exists. In this case we write δ(p, σ)! and say δ(p, σ) is defined when the
particular value of q is not of interest.

The collection of all finite sequences over Σ is denoted as Σ∗. An element of Σ∗

represents a sequence of event occurrences and is called a string. The empty string
is denoted by ε.

The transition function δ can be inductively extended on its second argument so
that δ : Q× Σ∗ ↛ Q.

In cases where confusion could arise, we superscript components of an automaton
with the automaton’s name. For example, we use QG to refer to the state set of G.

5

2 Preliminaries

The language generated by G is defined as

L(G) = { s ∈ Σ∗ | δ(q0, s)! }

A language L is said to be prefix-closed whenever for all strings sσ ∈ L, it is always
the case that s ∈ L.

The language L(G) is interpreted as the set of physically possible behaviours of G.
By definition, L(G) is always prefix-closed.

2A1 Decentralized Supervisory Control with Partial Observations

A plant’s behaviours may not all be desirable. In such a case, we constrain its
behaviours through supervisory control. In the problems we consider, we allow an
arbitrary number of supervisors to jointly perform the control, where each supervisor
observes and controls a subset of events.

Decentralized control has been examined by many DES researchers. For a more
extensive discussion, see Cassandras and Lafortune [CL07, Chapter 3.8] on decen-
tralized control.

With an event being controlled potentially by multiple supervisors, a mechanism
to combine control decisions by these supervisors is necessary. Prosser, Kam, and
Kwatny [PKK97] explicitly name such mechanisms fusion rules. Later work by
Yoo and Lafortune [YL02] realized that fusion rules for each event can be chosen
separately and independently.

Formally, we express the decentralized supervisory architecture as follows.

Definition 2A1.1
Let N = {f1, . . . , fn} be a finite set of n supervisors for plant G. We write i instead
of fi when referring to the supervisor per se; this choice is determined by readability.

For each supervisor i ∈ N , let Σi,c,Σi,o ⊆ Σ be the sets of controllable and observable
events for Supervisor i, resp. Denote the set of events controlled by some supervisors
Σc =

⋃
i∈N Σi,c, and the set of events not controlled by any supervisor Σuc =⋂

i∈N Σ − Σi,c. Hence we have Σuc = Σ − Σc. The sets Σo and Σuo are defined
similarly. Let Nσ = { i ∈ N | σ ∈ Σi,c } be the set of agents controlling σ.

For each i ∈ N , define a function that represents a supervisor’s observation. Define
the projection function Pi : Σ → Σi,o ∪ { ε } such that Pi(σ) = σ if σ ∈ Σi,o and

6

2A Discrete-Event Systems

Pi(σ) = ε otherwise. Informally, Pi erases unobservable events and preserves observ-
able events in their original sequential order. Extend Pi from Σ to Σ∗ inductively.

With a slight abuse of notation, we use Pi(G) to denote the automaton constructed by
replacing all transitions labelled by an unobservable event with ε and determinized,
so that Pi(G) recognizes the language Pi(L(G)).

Let CD be the set of supervisory control decisions. Now supervisors can be prescribed
by fi : Pi(L(G))×Σi,c → CD for all fi ∈ N . Specifying supervisors taking arguments
from Pi(L(G)) instead of L(G) encodes requirements traditionally referred to as
feasibility and validity, i.e., a supervisor should behave consistently for two strings
s, s′ such that Pi(s) = Pi(s

′). We focus only on FSA-based supervisors. That is,
a supervisor fi can be realized as a Moore machine (Si, f

′
i) such that fi(s, σ) =

f ′
i(δi(qi,0, s), σ), where Si is an FSA (Σ, Qi, δi, qi,0), and f ′

i : Qi × Σi,c → CD. We will
refer to f ′

i simply as fi when convenient.

For each controllable event σ, let cdNσ denote the collection of control decisions
issued by supervisors i ∈ Nσ, hence cdNσ has exactly |Nσ| elements. Let CDNσ be
the collection of all such cdNσ ’s. Let FD = { enable, disable } be the set of fused
decisions. Let fσ : CDNσ → FD be the fusion functions chosen separately for each
σ ∈ Σc, and the joint supervision fN : L(G) × Σc → FD be defined as fN (s, σ) =
fσ({ fi(Pi(s), σ) }i∈Nσ). Consequently, only decisions issued by supervisors i ∈ Nσ

are fused, and decisions of supervisors not controlling the event σ are ignored.

The closed-loop behaviour of the plant with the joint supervision imposed is denoted
as defined L(fN/G), and defined inductively as the smallest set such that:

• ε ∈ L(fN/G)

• s ∈ L(fN/G) ∧ sσ ∈ L(G) ∧ σ ∈ Σuc ⇒ sσ ∈ L(fN/G)

• s ∈ L(fN/G) ∧ sσ ∈ L(G) ∧ σ ∈ Σc ∧ fN (s, σ) = enable ⇒ sσ ∈ L(fN/G)

The second bullet point in the definition of closed-loop behaviour captures the
requirement that a physically possible event that is not controllable by any supervisor
must be allowed to occur under supervision. The third bullet point says that a
physically possible event that is controllable and for which the fused decision is
enable must be allowed to occur under supervision.

Fig. 2.1 illustrates the architecture defined above, which is adapted from Fig. 2 by
Yoo and Lafortune [YL04] with entities labelled according to our symbolism.

7

2 Preliminaries

Figure 2.1: Architecture of Decentralized Control of DES. The controllable events
are σc,1, . . . , σc,m.

8

2A Discrete-Event Systems

Whereas the fusion function f can be seen as an n-ary operation on supervisory
control decisions CD, there is no operation over the fused decision set FD, since
elements in this set are to be interpreted as fused decisions and should be regarded
as final.

In the studies of decentralized problems, it is customary to identify a fusion rule as
an architecture.

In particular, even though for the architectures with binary control decisions, it
happens to be the case that |CD| = |FD|, and by choosing CD = FD = {0,1} (the
Boolean values), where 0 (resp., 1) stands for disable (resp., enable), the fusion
rule can be conveniently described as Boolean conjunction/disjunction1, as Rudie
and Wonham [RW92] and Prosser, Kam, and Kwatny [PKK97] did, we refrain from
doing so to avoid conflating the de facto different sets of binary control decisions.
As we will reveal, with an epistemic approach, a control decision 0 issued in a
conjunctive architecture has a different meaning from the same decision issued in a
disjunctive architecture; and a similar observation can be made for the other control
decision 1.

The sets CD and FD being disjoint also simplifies discussion: we can now refer
to an element of either set without explicitly stating from which set it comes. We
also refer to a certain element of either set simply as a decision when no confusion
would arise.
Remark 2A1.2
Whereas the set CD determines the number of distinct control decisions available
to the supervisors, what those decisions mean— their semantics— is given by the
fusion rule f . Although the symbols we choose for control decisions may be formally
meaningless, we will still choose them with the intended fusion rule in mind.

Constructing multiple supervisors jointly restricting a plant’s behaviours will be
called the Decentralized Supervisory Control and Observation Problem (DSCOP). We
will use the term “condition” (without qualification) to refer to the necessary and
sufficient condition needed to solve DSCOP.

For the sake of comparison, we will use the following generic definition of DSCOP
as a common ground for subsequent discussions.

Problem 2A1.3 (Decentralized Supervisory Control and Observation Problem,
DSCOP)
Given an automaton G which specifies the plant behaviour as the prefix-closed

1Perhaps under the influence of Prosser, Kam, and Kwatny [PKK97], the work of Takai and Ushio
[TU01], which precedes Takai, Kumar, and Ushio [TKU05], reverses the meaning of 0 and 1.
Hence their OR (resp., AND) rule corresponds to our conjunctive (resp., disjunctive) rule. We
follow the more common convention here.

9

2 Preliminaries

language L(G), an automaton E which specifies the legal behaviour as the prefix-
closed language L(E), n pairs of controllable/observable event sets, choose an
appropriate set of control decisions CD, and a fusion rule f , and synthesize a set N
of supervisors, such that L(fN/G) = L(E).

We arrange E to be a subautomaton of G as we will need this assumption to
construct the structure relevant to the interpretation of our epistemic expressions

We usually study the condition for a class of DSCOP for CD and f that are fixed
a priori. See also Rmk. 2A1.2. In particular, CD and f should be independent of
any specific G and E. We have to emphasize that in practice one is certainly free to
choose whatever CD and f necessary to solve the problem at hand. Fixing CD and
f allows us to classify pairs of G and E according to the CD and f sufficient for the
decentralized control problem to be solvable, and thus allows comparison among
pairs of CD and f .

The problem solvability condition of an architecture is usually called the co-observability
condition of that architecture. Sometimes more specific names have been given
when multiples architectures are being studied together.

2B Epistemic Logic

Ricker and Rudie [RR00; RR07] observed that reasoning about the decision-making
of decentralized supervisors could be facilitated using formal reasoning about
knowledge, via epistemic logic. Although formal conditions for solving DSCOP can
be described using conditions on strings in languages, and hence do not require
a formal logic description, epistemic logic provides a natural modelling paradigm
that parallels natural languages, thus giving better intuition into the reasoning
behind the decisions that supervisors make. Specifically, the epistemic operator in
the language expresses concepts such as “agent i knows a certain event must be
disabled”. Discussing a supervisor with such anthropomorphic phrases puts oneself
in the perspective of the supervisor and reveals what “knowledge” the agent must
have to make a decision.

Epistemic logic as used in distributed computing problems was first presented by
Halpern and Moses [HM90]. See Fagin et al. [Fag+04] for more details. We
provide in the remainder of this section the concepts from epistemic logic needed to
understand our work.

Definition 2B.1
For a fixed set V of variables, where v denotes some element of V , and a fixed finite

10

2B Epistemic Logic

set N of agents, where i denotes some element of N , the set of epistemic modal
formulae is defined inductively by the following grammar:

S, T ::= (v) propositional variable v
| (¬S) negation of S
| (S ∧ T) conjunction of S, T
| (KiS) agent i knows S

Definition 2B.2
It is conventional to define other connectives from the primitive ones above:

• (α ∨ β) =df ¬(¬α ∧ ¬ β),

• (α ⇒ β) =df (¬α ∨ β)

Where convenient, we use the connectives defined above to express ideas, but
when reasoning about epistemic formulae, we assume that defined connectives
of Defn. 2B.2 have all been syntactically expanded, so we only have to deal with
primitive ones of Defn. 2B.1.

We omit parentheses according to the following precedence convention: unary
operators ¬, Ki bind tightest, then ∧,∨,⇒.

When an expression S is short enough, we sometimes write ¬S as S for compact-
ness.

The semantics of epistemic formulae are given through the use of a structure called
a Kripke structure.

Definition 2B.3
For some V and N , a Kripke structure, or simply a frame I is

(W,π, {∼i }i∈N)

where

• W is a finite set of possible worlds, or states 2

• π : W × V → { true, false } evaluates each propositional variable in V at each
possible world in W to either true, or false.

2The term “states” should cause no confusion in this context, since the worlds in the frames we
construct in this work happen to be states of some FSA.

11

2 Preliminaries

• For each i ∈ N , ∼i ⊆ W ×W is the accessibility relation over possible worlds,
and we say world w′ is considered by agent i as an epistemic alternative if
w′ ∼i w.

Whereas the accessibility relations are commonly required to be equivalence re-
lations over W , a formal construction we will present uses relations that are not
reflexive, and are thus partial equivalence relations. Hence we denote accessibility
relations as ∼, and reserve ≃ for discussions in which the relations are indeed
equivalence relations. Note as Ricker and Rudie [RR07] do not distinguish these
cases, they used ∼ for the latter.

While, as we have already signified, the language of epistemic logic gives intuitive
understanding of how agents reason about uncertainty and choose control decisions
accordingly, we make no philosophical claim over what knowledge is. That is, we
use epistemic logic purely as a formal instrument, to encapsulate complexity of
expressions otherwise given rise to by using predicate logic, which is commonly
used in traditional approaches toward supervisory control of DES, such as Rudie
and Wonham [RW92] and Yoo and Lafortune [YL04].

In our formalism, the propositional connectives (the second and third items in
Defn. 2B.4 below) are to be understood as usual. The semantics of the epistemic
operator (the last item in Defn. 2B.4) reflect that, upon observing a sequence of
events generated by the plant, a supervisor can only know something (i.e., be certain
that it is true), if it is always true after any sequence (generated by the plant) that
looks the same to the supervisor as the sequence of events it has observed.

To reflect the discussion above, we thus adopt the following formal definition of the
semantics of epistemic formulae as the relation |= of pairs of Kripke structures and
worlds, and epistemic modal formulae, given inductively over the structure of the
formulae.

Definition 2B.4
• (I, w) |= v iff π(w, v) = true

• (I, w) |= ¬S iff it is not the case that (I, w) |= S

• (I, w) |= S ∧ T iff (I, w) |= S and (I, w) |= T

• (I, w) |= KiS iff for all w′ ∈ W such that w′ ∼i w, (I, w′) |= S.

By construction, either (I, w) |= S or not, so we have either (I, w) |= S or (I, w) |=
¬S, i.e., one and only one of a formula and its negation is satisfied. Moreover,
it is decidable. Hence we can inductively extend π from propositional variables
to epistemic formulae, subject to the interpretation I, and regard the relation |=

12

2B Epistemic Logic

as the relation satisfying (I, w) |= S ⇔ πI(S,w) = true. Henceforth when talking
about the semantic of formulae against interpretations, we also call formulae as
expressions, because they evaluate.

Often, throughout a discussion, all epistemic expressions are evaluated against the
same pair of I, w. In those cases, to avoid repeatedly writing (I, w) |= ·, we tend to
simply say S in place of (I, w) |= S.

2B1 Epistemic Logic in DSCOP

In this subsection, we discuss how Kripke structures are constructed to express
DSCOP problems. These Kripke structures will be used to interpret a number of
epistemic expressions, where an expression being interpreted as truth corresponds
to a co-observability condition holding. The epistemic expressions will then give
denotation to the control decisions and fusion rules. This approach is adapted from
Ricker and Rudie [RR07] with some necessary modifications.

Consider a plant G, a subautomaton E of G specifying the legal behaviour, n pairs
of sets of controllable/observable events. Construct Gobs

i = Pi(G) for each i, where
it can also be interpreted Qobs

i = {Σi,uo-closure of q | q ∈ Q }. This is agent i’s
perception of the plant under partial observation, i.e., the agent cannot distinguish
G and Gobs

i by only observing sequences of events generated by these two FSA.

Next we construct a composite structure that will allow us to keep track of plant
behaviour and each supervisor’s view of the corresponding plant behaviour. We
do this through the construction G′ = G×Gobs

1 × · · · ×Gobs
n = (Σ, Q′, δ′, q′0), where

Q′ ⊆ Q×Qobs
1 × · · · ×Qobs

n ⊆ Q×PQ× · · · ×PQ and PQ is the powerset of Q, δ′ is
component-wise application of δG and δobsi for i ∈ N , q′0 = (q0, q

obs
0,1 , . . . , q

obs
0,n) where

qobs0,i ∈ Qobs
i and thus qobs0,i ⊆ Q for i ∈ N .

Our composite structure G′ generates the same language as G does, however the
Cartesian product of states forming Q′ allows us to track more information than that
is available by simply tracking the sequence of states in Q visited by some sequence
of events in the plant language. Namely, (q, qobs1 , . . . , qobsn) ∈ Q′ records not only the
current state q of G, but also each agent’s best estimation qobsi of the set of states the
plant could possibly be at based on agent i’s observation, for each i ∈ N , which is to
be expected since the actual plant state should always be a state that any observer
thinks the plant could be in.

Now we are ready to construct the Kripke structure against which the expressions
of the various co-observability conditions are interpreted.

13

2 Preliminaries

We start by letting W = Q′. To avoid multiple arguments with both subscripts
and superscripts, we will write (we, w1, . . . , wn) for an element of W instead of
(q, qobs1 , . . . , qobsn),

Each of the two Kripke structures we are about to discuss is constructed with one of
the following two kinds of accessibility relations.

The accessibility relations ≃i is constructed such that w ≃i w
′ whenever wi = w′

i.
The accessibility relations ≃i are clearly equivalence relations. Hence denote {w′ ∈
W | w′ ≃i w } as [w]≃i

, or simply [w]i. This coincides with the construction by Ricker
and Rudie [RR07].

The other kind of accessibility relations ∼i is constructed such that w ∼i w
′ whenever

we ∈ QE ∧ w′
e ∈ QE ∧ wi = w′

i. Particularly note that ∼i is an equivalence relation
on {w ∈ W | we ∈ QE }, and for all w such that we ̸∈ QE, w has no referent nor
relatum (participating ∼i). Hence, the relations ∼i are partial equivalence relations.
It is reasonable to consider the equivalence class [w]∼i

, or simply, [w]i, whenever
we ∈ QE. Only with an abuse of notation, let [w]i = ∅ for we ̸∈ QE. Informally, one
may interpret [w]i as containing exactly the worlds that are epistemic alternatives to
w as perceived by agent i.

The collection of all equivalence classes induced by ≃i (∼i) is denoted as ker ≃i

(ker ∼i).

We need the following atomic propositions, taken from [RR07], to capture the
presence/absence of transitions of an event σ. Hence we let V =

⋃
σ∈Σ{σG, σE },

and define

π(w, σG) =

{
true δG(w, σ)!

false otherwise

π(w, σE) =

{
true δE(w, σ)!

false otherwise

The intended meaning of π(w, σG) = true is that σ can physically occur at state
w, as specified by G; whereas π(w, σE) = true indicates that σ is legal and should
be allowed to happen. It follows that π(w, σE) = true ⇒ π(w, σG) = true, which
reflects the fact that E is a subautomaton of G.

Finally, let the Kripke structures be I = (W,π, {≃i }i∈N) and I = (W,π, {∼i }i∈N).

Technically, the constructed Kripke structures I and I are parameterized over certain
G, {Pi }i∈N , and E. However, our discussion will not simultaneously concern
multiple sets of these entities, but assume an indefinite one, hence we write simply

14

References

I and I, rather than, say, I(G,P1, · · · , Pn, E), for the Kripke structure parameterized
over that indefinite, but specific set of arguments.

The difference between the two kinds of Kripke structures is as follows. Since by
construction we have ∼i ⊆ ≃i, hence the condition I |= Ki(ϕ) is strictly stronger
than the condition I |= Ki(ϕ).

References

[CL07] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete
Event Systems. Second. Springer-Verlag GmbH, 2007. 772 pp. [cit. on p.
5. 6].

[Fag+04] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Vardi.
Reasoning About Knowledge. The MIT Press, 2004. DOI: 10.7551/
mitpress/5803.001.0001. [cit. on p. 10].

[HM90] Joseph Y. Halpern and Yoram Moses. “Knowledge and common knowl-
edge in a distributed environment”. In: Journal of the ACM 37.3 (July
1990), pp. 549–587. DOI: 10.1145/79147.79161. [cit. on p. 10].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion and supervi-
sor synthesis in decentralized discrete-event systems”. In: Proceedings
of the American Control Conference. IEEE, 1997. DOI: 10.1109/ACC.
1997.608978. [cit. on p. 6. 9].

[RR00] S. L. Ricker and K. Rudie. “Know means no: Incorporating knowledge
into discrete-event control systems”. In: IEEE Transactions on Automatic
Control 45.9 (2000), pp. 1656–1668. DOI: 10.1109/9.880616. [cit. on
p. 10].

[RR07] S. L. Ricker and K. Rudie. “Knowledge Is a Terrible Thing to Waste:
Using Inference in Discrete-Event Control Problems”. In: IEEE Trans-
actions on Automatic Control 52.3 (Mar. 2007), pp. 428–441. DOI:
10.1109/TAC.2007.892371. [cit. on p. 10. 12. 13. 14].

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally: decentralized
supervisory control”. In: IEEE Transactions on Automatic Control 37.11
(1992), pp. 1692–1708. DOI: 10.1109/9.173140. [cit. on p. 9. 12].

[TKU05] S. Takai, R. Kumar, and T. Ushio. “Characterization of co-observable
languages and formulas for their super/sublanguages”. In: IEEE Trans-
actions on Automatic Control 50.4 (Apr. 2005), pp. 434–447. DOI:
10.1109/tac.2005.844724. [cit. on p. 9].

15

https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1145/79147.79161
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/9.880616
https://doi.org/10.1109/TAC.2007.892371
https://doi.org/10.1109/9.173140
https://doi.org/10.1109/tac.2005.844724

2 Preliminaries

[TU01] S. Takai and T. Ushio. “Strong co-observability conditions for decen-
tralized supervisory control of discrete event systems”. In: Proceedings
of the 40th IEEE Conference on Decision and Control. IEEE, 2001. DOI:
10.1109/cdc.2001.980821. [cit. on p. 9].

[WC18] W. Murray Wonham and Kai Cai. Supervisory Control of Discrete-Event
Systems. Springer-Verlag GmbH, 2018. 487 pp. [cit. on p. 5].

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture for Decen-
tralized Supervisory Control of Discrete-Event Systems”. In: Discrete
Event Dynamic Systems 12.3 (2002), pp. 335–377. DOI: 10.1023/a:
1015625600613. [cit. on p. 6].

[YL04] T.-S. Yoo and S. Lafortune. “Decentralized Supervisory Control With
Conditional Decisions: Supervisor Existence”. In: IEEE Transactions on
Automatic Control 49.11 (Nov. 2004), pp. 1886–1904. DOI: 10.1109/
tac.2004.837595. [cit. on p. 7. 12].

16

https://doi.org/10.1109/cdc.2001.980821
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2004.837595

3 Epistemic Interpretations of
Decentralized Discrete-Event
System Problems

This chapter presents epistemic characterizations to co-observability conditions in
decentralized supervisory control of discrete-event systems. The logical charac-
terizations provide more intuitive interpretations of the various co-observability
conditions, and make immediately apparent the relations between the conditions.
Closures under set union of some of the conditions are also discussed.

3A Introduction

Different architectures have been explored in the literature for decentralized su-
pervisory control. Since the inference architecture subsumes other architectures
— conjunctive architecture [RW92], disjunctive architecture [PKK97],and other
variations [TKU05] — we claimed in the earlier work [RR23] that, by simply re-
moving certain lines in our epistemic expression of inference-observability, which
corresponds to removing certain control decisions, the conditions for each of these
subsumed architectures can also be interpreted epistemically, due to the line-by-
line coupling in our expressions. In this chapter we provide such results. Conse-
quently, although relations between the various co-observability conditions were
known before (e.g., Takai, Kumar, and Ushio [TKU05]), proving them is not only
cumbersome, but also had to be done for each implication individually. In contrast,
once each condition is cast as a logic expression, the relationships are immediately
apparent.

Moreover, perhaps not satisfied by the absence of desirable algebraic properties—
closure under set union/intersection— of the various co-observability conditions,
Takai, Kumar, and Ushio [TKU05] provided for each a stronger version to restore the
desirable properties. Since these stronger versions are obtained with an algebraic
approach, it is not intuitive how much “stronger” these strong versions are relative
to the original ones. This chapter provides insight with an epistemic perspective.

17

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

3B Co-observability Conditions and Their Strong
Versions

The earliest work by Rudie and Wonham [RW92] (and similarly by Cieslak et al.
[Cie+88]) on decentralized control problems considered the architecture where
the binary set of control decisions are expressed as Boolean values and the fusion
rule is taken to be the Boolean conjunction. The condition for the class of problems
to be solvable is originally called by Rudie and Wonham [RW92] simply co-observ-
ability. Later when multiple architectures were being considered simultaneously,
Yoo and Lafortune [YL02] called such architecture Conjunctive and Permissive (C&P)
architecture and changed the name of its condition to C&P co-observability.

Prosser, Kam, and Kwatny [PKK97] showed that, when the fusion rule is taken to be
the Boolean disjunction, the condition of the problem differs from that of C&P co-
observability. Yoo and Lafortune [YL02] called this architecture Disjunctive and Anti-
permissive (D&A) architecture, and also called the condition of the D&A architecture,
given by Prosser, Kam, and Kwatny [PKK97] as D&A co-observability.

Further, Yoo and Lafortune [YL02] noticed that the fusion rules for each event can
be chosen separately and independently. This gives the architecture they originally
called general architecture, and the condition of which is, potentially confusingly,
called co-observability. The names of the architecture and its condition are later
renamed to C&P∨D&A architecture and C&P∨D&A co-observability, respectively, by
Takai, Kumar, and Ushio [TKU05]. While the control decisions used in the C&P∨D&A
architecture can be encoded as Boolean values, as we will reveal, semantically there
are three kinds of decisions, two of which will never be issued simultaneously when
the language is C&P∨D&A co-observable.

While Takai, Kumar, and Ushio [TKU05] has defined a notion of C&P∧D&A co-
observability as the conjunction of C&P co-observability and D&A co-observability,
this notion has received less discussion compared to the other co-observability
conditions. Particularly, Takai, Kumar, and Ushio [TKU05] did not provide a corre-
sponding C&P∧D&A architecture and how a DSCOP problem is solved under such
an architecture. More specifically, we might ask “what would be the fusion rule of
(and control decisions available to) the C&P∧D&A architecture?”

On the other hand, the existence of a condition for each of the architectures indicates
that a given DSCOP is not always solvable. In such a case one may be interested to
find instead a sublanguage L′ ⊆ L(E) such that L(fN/G) = L′. Since an optimal
solution does not necessarily exist, it is then interesting to give upper/lower bounds.
This has led to the discussion of the “strong” versions of the various co-observability
conditions [TKU05]. These strong versions are obtained by pure algebra and hence

18

3C Epistemic Expressions of decentralized control conditions

offer little intuition of how strong they are.

3C Epistemic Expressions of decentralized control
conditions

This section recalls decentralized control conditions by Rudie and Wonham [RW92],
Prosser, Kam, and Kwatny [PKK97], Yoo and Lafortune [YL02], and Takai, Kumar,
and Ushio [TKU05]. Before proceeding to deriving epistemic expressions for each
of the conditions, we provide some informal descriptions.

Both the conjunctive architecture [RW92] and the disjunctive architecture [PKK97]
are traditionally described as using two control decisions, enable and disable,
conveniently denoted as Boolean values 1 and 0. The supervisors subscribe to the
following strategy:

In the conjunctive architecture, the fusion rule resolves conflict by the fact that
0∧ 1 = 0, i.e., in case of conflict, 0 takes precedence over 1. Hence, the supervisors’
strategy is to issue 0 when determined to disable an event, and issue 1 when
uncertain and expect the best. Hence from each supervisor’s perspective, this
strategy is permissive. Due to this perspective, the conjunctive architecture was
called the conjunctive and permissive (C&P) architecture.

Dually, in the disjunctive architecture, the fusion rule resolves conflict by the fact
that 0 ∨ 1 = 1, i.e., in case of conflict, 1 takes precedence over 0. Hence, the
supervisors’ strategy is to issue 1 when determined to enable an event, and issue 0
when uncertain and expect the best. Hence from each supervisor’s perspective, this
strategy is anti-permissive. Due to this perspective, the disjunctive architecture has
been called the disjunctive and anti-permissive (D&A) architecture.

From now on, we will use the shorter terms C&P and D&A instead of conjunctive
and disjunctive.

The remaining architectures can be thought as a combination of the conjunctive
architecture and disjunctive architectures. The interpretations are more involved,
hence we postpone them until all architectures have been cast into a uniform
description (which uses epistemic logic).

We now proceed to derive epistemic expressions for the various co-observability
conditions and related conditions. As it is the point of this chapter that epistemic
expressions are closer to human language and are thus easier to interpret, we refrain

19

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

from explaining the conditions produced by the original sources and reproduced
here. Those conditions are typically expressed in terms of strings and languages,
in contrast to the epistemic logic expressions that we will give. Indeed, while the
verbal explanations of the language-based expressions can often be found in these
original sources, the explanations provided can be seen as an informal attempt to
interpret the expressions epistemically.

3C1 C&P co-observability

To obtain an epistemic expression of C&P co-observability, we begin from the
following standard definition of C&P co-observability from Rudie and Wonham
[RW92]:

∀ s, { si }i∈N .[∧
i∈N

Pi(s) = Pi(si)

]
⇒ ∀σ ∈ Σc .

∨
i∈Nσ

[
siσ ∈ L(E) ∧ s ∈ L(E) ∧ sσ ∈ L(G)
⇒ sσ ∈ L(E)

] (3.1)

For our later convenience, we extract the quantification ∀σ ∈ Σc outwards. We
need the logic identity [P ⇒ ∀x. Q(x)] ⇔ [∀x. P ⇒ Q(x)], where x does not occur
free in P , and the commutativity of universal quantifications (under the restriction
of no free occurrence). So we have equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒
∨
i∈Nσ

[
siσ ∈ L(E) ∧ s ∈ L(E) ∧ sσ ∈ L(G)
⇒ sσ ∈ L(E)

]

Notice we have also quantified all i’s over Nσ instead of N , since for i ∈ N \Nσ the
statement is vacuously satisfied as the consequent of (3.1) is quantified only over
i ∈ Nσ.

Since i does not occur freely in s ∈ L(E) ∧ sσ ∈ L(G), we proceed to extract the
term outwards. Using the logic identity

∨
x [P ⇒ Q(x)] ⇔ [P ⇒

∨
xQ(x)], where

x does not occur freely in P , together with currying and commutativity, we have

20

3C Epistemic Expressions of decentralized control conditions

equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ s ∈ L(E) ∧ sσ ∈ L(G)

⇒
∨
i∈Nσ

[
siσ ∈ L(E)
⇒ sσ ∈ L(E)

]

By applying modus tollens, we have equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ s ∈ L(E) ∧ sσ ∈ L(G)

⇒
∨
i∈Nσ

[
sσ ̸∈ L(E)
⇒ ¬(siσ ∈ L(E))

]

Notice that we wrote ¬(siσ ∈ L(E)) instead of siσ ̸∈ L(E) so that further on in our
development the format will allow us to exploit the fact that siσ ∈ L(E) implies
siσ ∈ L(G).

Again, we have a term sσ ̸∈ L(E) in which i does not occur free, so we extract it
outwards and have equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ s ∈ L(E) ∧ sσ ∈ L(G) ∧ sσ ̸∈ L(E)

⇒
∨
i∈Nσ

¬(siσ ∈ L(E))

Since L(E) is prefix-closed and L(E) ⊆ L(G), the statement siσ ∈ L(E) is equivalent

21

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

to si ∈ L(E) ∧ siσ ∈ L(G) ∧ siσ ∈ L(E). Hence we have equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ s ∈ L(E) ∧ sσ ∈ L(G) ∧ sσ ̸∈ L(E)

⇒
∨
i∈Nσ

[si ̸∈ L(E) ∨ siσ ̸∈ L(G) ∨ siσ ̸∈ L(E)]

We then extract s ∈ L(E) and si ∈ L(E) outwards. For si ∈ L(E), since i occurs
freely in it, we use the logic identity [

∨
x(P (x) ∨Q(x))] ⇔ [

∨
x P (x) ∨

∨
xQ(x)] ⇔

[
∧

x ¬P (x) ⇒
∨

xQ(x)], and hence have equivalently

∀σ ∈ Σc . ∀ s ∈ L(E), { si ∈ L(E) }i∈Nσ .[∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ sσ ∈ L(G) ∧ sσ ̸∈ L(E)

⇒
∨
i∈Nσ

[
siσ ∈ L(G)
⇒ siσ ̸∈ L(E)

]
(3.2)

We can observe that if s, si ∈ L(E), there must be w,w′ ∈ Q′ such that we, w
′
e ∈ QE

and δ′(q′0, s) = w, δ′(q′0, si) = w′. Also, if Pi(s) = Pi(si) and s, si ∈ L(E), must have
w′ ∼i w. The reverse directions of the two implications are reasoned similarly.
Hence expression (3.2) is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

[(I, w) |= σG ∧ ¬σE]

⇒
∨
i∈Nσ

∀w′ ∼i w. [(I, w
′) |= σG ⇒ ¬σE]

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σG ∨ ¬σE)

22

3C Epistemic Expressions of decentralized control conditions

By σE ⇒ σG the expression above can be equivalently simplified to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)
(3.3)

which is an epistemic expression of C&P co-observability.

With an epistemic expression, we interpret C&P co-observability as follows: The
expression (3.3) says, after a legal sequence s, for an event σ, if (I, w) |= (σG∧¬σE)
(i.e., not only is σ possible to happen, but it is also illegal and hence must be
disabled), then a supervisor i controlling σ can correctly disable it by knowing that
disabling σ does not violate the control requirement. If none of the supervisors
disables σ, then either σ cannot happen after s (signified by ¬σG), or if it can
happen, it must be legal (signified by σE), and hence the fused decision of σ can be
defaulted to enable.

Specifically, in the conjunctive architecture, the control decision 1 does not actively
enable an event. It merely indicates that a supervisor issuing such a decision cannot
confidently disable the event and abstains from voting. This asymmetry between the
two control decisions 0 and 1 corresponds to the property of Boolean conjunction
that the operation yields 0 as soon as a 0 operand is present, and it only yields 1
when all operands are 1.

Therefore, it is more appropriate to relate the control decisions 0 and 1 to the
control decisions off and abstain used in our earlier work [RR23]. We will formally
define the semantics (through the fusion rule) of these two control decisions in
Section 3C6.

Readers familiar with the work of Ricker and Rudie [RR00] may notice a similarity
between (3.3) and the expression of Kripke-observability discussed by them. We
now proceed to discuss their relationship.

One of the two ways in which Kripke-observability differs from (3.3) is that (3.3)
quantifies over only controllable events, while Kripke-observability quantifies over all
events. We emphasize that this is not a shortcoming of our expression. We proceed
by showing that Kripke-observability, in a sense, has combined two orthogonal
conditions: C&P co-observability and controllability.

Definition 3C1.1 (Controllability [RW87])
A prefix-closed language L(E) ⊆ L(G) is said to be controllable w.r.t. G and Σuc

whenever
L(E)Σuc ∩ L(G) ⊆ L(E)

23

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

or equivalently,

∀σ ∈ Σuc . s ∈ L(E) ∧ sσ ∈ L(G) ⇒ sσ ∈ L(E)

Hence, C&P co-observability together with controllability is equivalent to

∀σ ∈ Σ . σ ∈ Σc ⇒ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

∧ σ ∈ Σuc ⇒ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= ¬σG ∨ σE

where the first conjunction is C&P co-observability, and the second conjunction is
controllability.

Since ¬σG∨σE is equivalent to (σG∧¬σE) ⇒ ⊥, and for σ ∈ Σuc and any expression
ϕ,
∨

Nσ
ϕ =

∨
∅ ϕ = ⊥, the above is equivalent to

∀σ ∈ Σ . σ ∈ Σc ⇒ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

∧ σ ∈ Σuc ⇒ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

and hence equivalent to

∀σ ∈ Σ . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

This expression differs from that of Kripke-observability [RR00] only in the Kripke
structure used: the Kripke structure used by the same authors [RR00] is infinite
if the plant language contains infinitely many strings. The later work by Ricker
and Rudie [RR07] does use a finite structure, but does not explicitly state that the
approach can be applied to Kripke-observability.

24

3C Epistemic Expressions of decentralized control conditions

While one can combine C&P co-observability with controllability into one single
clean and compact expression, we refrain from doing so: as we will demonstrate
with D&A co-observability as an example, controllability condition does not usually
combine nicely with observability-related ones.

3C2 D&A co-observability

To obtain an epistemic expression of D&A co-observability, we begin from the
following definition of D&A co-observability [PKK97]:

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .

[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ s ∈ L(E) ∧ sσ ∈ L(E)

⇒
∨
i∈Nσ

[
si ∈ L(E) ∧ siσ ∈ L(G)
⇒ siσ ∈ L(E)

]

Following similar steps as we did in Section 3C1, namely by reordering logic
connectives and converting from language-theoretical expressions to epistemic-logic
expressions, we have equivalently

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ σE
⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)
(3.4)

which is an epistemic expression of D&A co-observability. Notice that we intention-
ally refrained from contracting σG ∧ σE into σE for uniformity with other expres-
sions.

With an epistemic expression, we interpret D&A co-observability as follows: The
expression (3.4) says, after a legal sequence s, for an event σ, if (I, w) |= σE (i.e.
not only is σ possible to happen, but it is also legal and hence must be enabled),
then a supervisor i controlling σ can correctly enable it by knowing that enabling σ
does not violate the control requirement. If none of the supervisors enable σ, then
either σ cannot happen after s, or if it can happen, it must be illegal, and hence the
fused decision of σ can be defaulted to disable.

Specifically, in the conjunctive architecture, the control decision 0 does not actively
disable an event. It merely indicates that a supervisor issuing such a decision cannot
confidently enable the event and abstains from voting. This asymmetry between the

25

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

two control decisions 0 and 1 corresponds to the property of Boolean disjunction
that the operation yields 1 as soon as a 1 operand is present, and it only yields 0
when all operands are 0.

Therefore, it is more appropriate to relate the control decisions 0 and 1 to the
control decisions abstain and on used in our earlier work [RR23]. We will formally
define the semantics (through the fusion rule) of these two control decisions in
Section 3C6.

The case of D&A co-observability demonstrates the reason that we refrain from
combining controllability condition with co-observability conditions into one expres-
sion. On the one hand, unlike the case of C&P co-observability, there is no compact
expression that expresses both D&A co-observability and controllability. Similar
comments can be made to other co-observability conditions as well. On the other
hand, if we begin from

∀σ ∈ Σ . ∀w ∈ Q′ .

(I, w) |= σE

⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)

we’d then have equivalently

∀σ ∈ Σ . σ ∈ Σc ⇒ . . .

∧ σ ∈ Σuc ⇒∀w ∈ Q′ .

(I, w) |= ¬σE

where the second part can be equivalently expressed as

∀σ ∈ Σuc . s ∈ L(G) ⇒ sσ ̸∈ L(E)

or equivalently
L(G)Σuc ∩ L(E) = ∅

which expresses that no legal string ends with an uncontrollable event, or, any string
ends with an uncontrollable event is illegal.

3C3 Strong C&P co-observability

To obtain an epistemic expression of strong C&P co-observability, we begin from
the following definition of strong C&P co-observability (Takai and Ushio [TU01,

26

3C Epistemic Expressions of decentralized control conditions

Proposition 1], Takai, Kumar, and Ushio [TKU05]):

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .

[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ s ∈ L(G) ∧ sσ ∈ L(G)− L(E)

⇒
∨
i∈Nσ

[
si ∈ L(G) ∧ siσ ∈ L(G)
⇒ siσ ̸∈ L(E)

] (3.5)

We can observe that if s, si ∈ L(G), there must be w,w′ ∈ Q′ and δ′(q′0, s) =
w, δ′(q′0, si) = w′. Also, if Pi(s) = Pi(si) and s, si ∈ L(G), must have w′ ≃i w.
The reverse directions of the two implications are reasoned similarly. Hence the
expression (3.5) is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ .

[(I, w) |= σG ∧ ¬σE]

⇒
∨
i∈Nσ

∀w′ ≃i w. [(I, w
′) |= σG ⇒ ¬σE]

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(σG ⇒ ¬σE)

By σE ⇒ σG the expression above can be equivalently simplified to

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)
(3.6)

Compare the epistemic expression of strong C&P co-observability (3.6) with that
of C&P co-observability (3.3). The only difference is between the Kripke struc-
tures I and I, or more specifically, the accessibility relations ∼i and ≃i. More is
required for an agent to “know” something under the interpretation I than under
the interpretation I.

To formalize this point, the condition

(I, w) |= Ki(ϕ)

27

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

which is equivalent to
∀w′ ≃i w. (I, w

′) |= ϕ

and further equivalent to

∀w′ s.t. w′
i = wi . (I, w

′) |= ϕ

which is strictly stronger than

∀w′ s.t. w′
i = wi and w′

e ∈ QE and we ∈ QE .

(I, w′) |= ϕ,

which is equivalent to
(I, w) |= Ki(ϕ).

Informally, strong C&P co-observability requires correct control decisions even at
illegal states. This is more than necessary since illegal states are not reachable if the
language is C&P co-observable and hence the desired control requirement can be
met. This is exactly how much stronger strong C&P co-observability is than C&P co-
observability.

Since strong C&P co-observability is a stronger version of C&P co-observability, one
may expect that it too can be combined with controllability. However, this is not the
case.

Instead, if we begin from

∀σ ∈ Σ . ∀w ∈ Q′ .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

we’d then have equivalently

∀σ ∈ Σ . σ ∈ Σc ⇒ ∀w ∈ Q′ .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

∧ σ ∈ Σuc ⇒∀w ∈ Q′ .

(I, w) |= ¬σG ∨ σE

where the first part is strong C&P co-observability.

The second part can be equivalently expressed as

∀σ ∈ Σuc . s ∈ L(G) ∧ sσ ∈ L(G) ⇒ sσ ∈ L(E)

28

3C Epistemic Expressions of decentralized control conditions

or equivalently
L(G)Σuc ∩ L(G) = L(E)

which requires all strings ending with uncontrollable events to be legal. The expres-
sion appears very similar to controllability, hence we call it strong controllability. Its
relation to controllability is exactly like that between strong C&P co-observability
and C&P co-observability.

3C4 Strong D&A co-observability

To obtain an epistemic expression of the strong D&A co-observability, we begin from
the following definition of strong D&A co-observability (Takai and Ushio [TU01,
Proposition 1], Takai, Kumar, and Ushio [TKU05]):

∀σ ∈ Σc . ∀ s, { si }i∈N .
[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ s ∈ L(G) ∧ sσ ∈ L(E)

⇒
∨
i∈Nσ

[
si ∈ L(G) ∧ siσ ∈ L(G)
⇒ siσ ∈ L(E)

]

Following similar steps as we did in Section 3C3, namely by reordering logic
connectives and converting from language-theoretical expressions to epistemic-logic
expressions, we have equivalently

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ∧ σE
⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)
(3.7)

In the expression above, it is possible to further restrict the quantification of w,
equivalently, to ∀w ∈ Q′ such that we ∈ QE. However we refrain from doing so to
keep the expression analogous to that of (3.6).

3C5 C&P∧D&A co-observability

Say that the prefix-closed language L(E) is C&P∧D&A co-observable if L(E) is
both C&P co-observable and D&A co-observable [TKU05]. Hence C&P∧D&A co-

29

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

observability is equivalent to
∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

∧

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ σE
⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ⇒

¬σE ⇒

∨
i∈Nσ

Ki(¬σE)

∧ σE ⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)

 (3.8)

The expression (3.8) can be interpreted as follows: if an event is possible, then if
it’s not legal some agent knows it can be disabled (because it is illegal), and if it’s
legal some agent knows it can be enabled (either because it is legal or cannot even
occur).

More compactly, we can write

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ⇒

∨
i∈Nσ

Ki(¬σE)

∨
∨
i∈Nσ

Ki(¬σG ∨ σE)

Finally, we proceed to remove the superfluous σG ⇒ Consider a world w ∈ Q′

such that we ∈ QE. Consider also all worlds w′ ∈ [w]i for some i. If at some w′ we
have σG, then expression in the square brackets holds at w. If at all w′ we have ¬σG,
then have Ki(¬σG) at w, so the aforementioned expression in square brackets also
holds at w. Hence, we have equivalently

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=
∨
i∈Nσ

Ki(¬σE)

∨
∨
i∈Nσ

Ki(¬σG ∨ σE)

(3.9)

30

3C Epistemic Expressions of decentralized control conditions

With an epistemic expression, we interpret C&P∧D&A co-observability as follows:
after a legal sequence s, for an event σ, if (I, w) |= σG (i.e. σ is possible to
happen, hence a decision about σ is obliged), then a supervisor can make a correct
decision.

Specifically, in the C&P∧D&A architecture, three control decisions are used: on, off
and abstain, where the fused decision is enable as soon as a on is issued; disable
as soon as a off is issued.

The condition guarantees that at least one on or at least one off is issued, so it is
not the case that all supervisors abstain. And it is physically impossible that both
on and off is issued. Together the fusion rule is well-defined.

3C6 C&P∨D&A co-observability

We proceed to derive an epistemic logic expression of C&P∨D&A co-observability as
follows:

Definition 3C6.1 (C&P∨D&A co-observability [YL02])
The language L(E) is C&P∨D&A co-observable if there exists a partition {Σc,e,
Σc,d } of Σc such that L(E) is C&P co-observable with respect to Σc,e and D&A co-
observable with respect to Σc,d

By (3.3) and (3.4), the C&P∨D&A co-observability of the language L(E) is equiva-
lent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= ¬(¬σG ∨ σE)

⇒
∨
i∈Nσ

Ki(¬σE)

∨ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= ¬(¬σE)

⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)

(3.10)

There are two approaches to derive more tidy expressions facilitating informal
interpretation. The first approach, similar to our earlier work [RR23], provides a
more compact expression and interpretation, whereas the second approach provides
additional insights.

31

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

Approach 1

Since whenever ¬(¬σG∨σE), it cannot be the case that Ki(¬σG∨σE); and similarly,
whenever ¬(¬σE), it cannot be Ki(¬σE). Hence, we can reach a simpler epistemic
expression of C&P∨D&A co-observability.

Definition 3C6.2
Let ϕ+

σ = ¬σG ∨ σE, ϕ−
σ = ¬σE.

The language L(E) is said to be C&P∨D&A co-observable whenever for any σ ∈ Σc,
there is a certain ϕσ ∈ {ϕ+

σ , ϕ
−
σ } for this σ, so that for all w ∈ W such that we ∈ QE,

we have

(I, w) |=
∨
i∈Nσ

Ki(¬σG ∨ σE) (3.11.1)

∨
∨
i∈Nσ

Ki(¬σE) (3.11.2)

∨ϕσ (3.11.3)

Following Ritsuka and Rudie [RR23] we know that the language L(E) being
C&P∨D&A co-observable is the necessary and sufficient condition for the DSCOP
with the following architecture to be solvable: the set of control decisions CD is
{on, off, abstain }, the fusion rule fσ ∈ { f+, f− } can be chosen for each σ ∈ Σc,
where f+, f− are defined as in Fig. 3.1. We have to emphasize that even though
there are three control decisions, the two decisions on, off will never be issued for
an event σ simultaneously at a state where the event σ is physically possible (i.e., at
a state where σG holds).

∃ i ∈ Nσ . cdi = on
⇒ f ∗(s, σ) = enable

• ∃ i ∈ Nσ . cdi = off
⇒ f ∗(s, σ) = disable

•

Otherwise, f+(s, σ) = enable, f−(s, σ) = disable.•

Figure 3.1: Fusion rule, where cdi = fi(Pi(s), σ) for short and f ∗ stands for both f+

and f−.

A control policy can be synthesized following the epistemic expression. For each
agent i, when the plant is in State q (so by construction agent i is in State qobsi

and q ∈ qobsi), for every event σ that agent i controls, agent i should issue control
decision on if (3.11.1) holds for i; off if (3.11.2) holds for i; abstain if otherwise
(i.e., only (3.11.3) holds for i).

32

3C Epistemic Expressions of decentralized control conditions

Hence for each event σ and the states such that neither (3.11.1) nor (3.11.2) holds
for some i (i.e., the states in which none of the agents can make a decision), if
either in all these states (3.11.3) holds for ϕ+

σ (in which case we take the default
action enable), or in all these states (3.11.3) holds for ϕ−

σ (in which case we take
the default action disable), so that the default action is unambiguous, then the
control requirement is achievable.

Approach 2

The second approach provides some additional insights. Specifically, we realized that
in the previous sections, the control decision abstain has been used not only when
a supervisor wishes to assert no influence over the fused decision. To demonstrate
this, we derive alternative expressions to separate the other semantics from the
decision abstain. After separating the semantics, we will demonstrate that it is
without loss of generality to require that never will all supervisors abstain, and thus
eliminate the need for choosing a default decision for each event.

To simplify the discussion, we first look back to the expression (3.3) of C&P co-
observability. We give yet another expression for C&P co-observability.

Theorem 3C6.3
Expression (3.3) is equivalent to the following expression:

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=
∨
i∈Nσ

Ki(¬σE) (3.12.1)

∨
∨
i∈Nσ

Ki(¬σG ∨ σE) (3.12.2)

∨
∨
i∈Nσ

Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE)) (3.12.3)

Before we proceed to a proof, we explain the requirement of j ̸= i: this requirement
is actually redundant in (3.12.3), however, keeping this requirement creates a
line-by-line correspondence between the co-observability condition (the problem
solvability condition) and the control protocol, as discussed in Ritsuka and Rudie
[RR23]. The following lemma, which is a generalization of Lemma 3.5 and Lemma
3.6 in Ritsuka and Rudie [RR23], can be readily proven:

Lemma 3C6.4

(I, w) |= Ki(σE ⇒
∨

j∈Nσ

Kj(¬σG ∨ σE)) (3.13)

33

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

iff
(I, w) |= Ki(¬σE)

∨Ki(¬σG ∨ σE)

∨Ki(σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE))
(3.14)

The proof proceeds analogously to those of Lemma 3.5 and Lemma 3.6 in Ritsuka
and Rudie [RR23].

Proof. (⇐): We have

(I, w) |= Ki(¬σE)

⇒(I, w) |= Ki(¬σE ∨
∨

j∈Nσ

Kj(¬σG ∨ σE))

⇒(I, w) |= Ki(σE ⇒
∨

j∈Nσ

Kj(¬σG ∨ σE))

Moreover,
(I, w) |= Ki(¬σG ∨ σE)

⇒∀w′ ∈ [w]i . (I, w
′) |= Ki(¬σG ∨ σE)

⇒∀w′ ∈ [w]i . (I, w
′) |=

∨
j∈Nσ

Kj(¬σG ∨ σE)

⇒∀w′ ∈ [w]i . (I, w
′) |= σE ⇒

∨
j∈Nσ

Kj(¬σG ∨ σE)

⇒(I, w) |= Ki(σE ⇒
∨

j∈Nσ

Kj(¬σG ∨ σE))

The last case is straightforward.

(⇒):
Assume (I, w) |= Ki(σE ⇒

∨
j∈Nσ

Ki(¬σG ∨ σE)).
Hence we have equivalently
∀w′ ∈ [w]i . (I, w

′) |= σE ⇒
∨

j∈Nσ
Ki(¬σG ∨ σE).

Hence we have equivalently
∀w′ ∈ [w]i . (I, w

′) |= ¬σE ∨
∨

j∈Nσ
Ki(¬σG ∨ σE). (∗)

Therefore, either
A: we ∈ QE; or
B: we ̸∈ QE.

Case A: we ∈ QE

Hence [w]i is not empty.
We have either

34

3C Epistemic Expressions of decentralized control conditions

A.1: ∃w′ ∈ [w]i . (I, w
′) |= Ki(¬σG ∨ σE); or

A.2: ¬∃w′ ∈ [w]i . (I, w
′) |= Ki(¬σG ∨ σE)

// The trick here is to not split the disjunctions in (∗).
Case A.1: ∃w′ ∈ [w]i . (I, w

′) |= Ki(¬σG ∨ σE)
Obtain w′ such that
w′ ∈ [w]i and
(I, w′) |= Ki(¬σG ∨ σE).

Hence ∀w′′ ∈ [w′]i . (I, w
′′) |= Ki(¬σG ∨ σE).

With [w′]i = [w]i,
we have ∀w′′ ∈ [w]i . (I, w

′′) |= Ki(¬σG ∨ σE).
Hence (I, w) |= Ki(¬σG ∨ σE).

Case A.2: ¬∃w′ ∈ [w]i . (I, w
′) |= Ki(¬σG ∨ σE)

Hence ∀w′ ∈ [w]i . (I, w
′) |= ¬Ki(¬σG ∨ σE).

With (∗),
we have ∀w′ ∈ [w]i . (I, w

′) |= ¬σE ∨
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE).

Thus (I, w) |= Ki(¬σE ∨
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE)).

Case B: we ̸∈ QE

Hence [w]i is empty.
Hence ∀w′ ∈ [w]i . (I, w

′) |= ϕ holds vacuously true.
Hence (I, w) |= Ki(ϕ) holds vacuously true.

□

We return now to the proof of Thm. 3C6.3.

Proof (Thm. 3C6.3). Consider an arbitrary event σ ∈ Σc and an arbitrary world
w ∈ Q′ such that we ∈ QE.

((3.3) ⇒ (3.12)) Suppose that for some i ∈ Nσ, at some w′ ∈ [w]i, it is the case that
Ki(¬σE). Thus we also have Ki(¬σE) (3.12.1) at w.

Suppose that for no i ∈ Nσ, at no world w′ ∈ [w]i, it is the case that Ki(¬σE). Then
at all w′ ∈ [w]i it must be ¬σG ∨ σE. Thus for any i ∈ Nσ, we have Ki(¬σG ∨ σE)
(3.12.2) at w.

((3.3) ⇐ (3.12)) Suppose that for some i ∈ Nσ, we have Ki(¬E). Then (3.3) is
automatic.

Suppose that for some i ∈ Nσ, we have Ki(¬σG ∨ σE). Since we ∈ QE, so w ∈ [w]i,
hence we also have ¬σG ∨ σE. Thus expression (3.3) holds.

Suppose that for some i ∈ Nσ, we have Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE)). Since

35

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

we ∈ QE, so w ∈ [w]i, hence we also have σG ∧ ¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE), which

implies (3.3). □

Notice that all three disjunctions in (3.12) are epistemic formulae, unlike (3.3)
where there is a propositional disjunction. Very informally, (3.12.3) comes from the
fact that whenever the language is C&P co-observable, all supervisors know it is so.
That is, C&P co-observability is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=
∧
i∈Nσ

Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ

Kj(¬σE)) (3.15)

which is a fact that can be used in an alternative proof for Thm. 3C6.3.

We can apply the same technique to the expression (3.4) of D&A co-observability as
well. Together with the expression (3.12), we can derive an alternative definition of
C&P∧D&A co-observability.

Definition 3C6.5 (alternative to Defn. 3C6.2)
Let

ψ+
σ =

∨
i∈Nσ

Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE)) (3.16)

ψ−
σ =

∨
i∈Nσ

Ki(σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE)) (3.17)

The language L(E) is said to be C&P∨D&A co-observable whenever for any σ ∈ Σc,
there is a certain ψσ ∈ {ψ+

σ , ψ
−
σ } for this σ, so that for all w ∈ W such that we ∈ QE,

we have

(I, w) |=
∨
i∈Nσ

Ki(¬σG ∨ σE) (3.18.1)

∨
∨
i∈Nσ

Ki(¬σE) (3.18.2)

∨ψσ (3.18.3)

What makes (3.12) and Defn. 3C6.5 interesting is that they reveal two distinct
semantics of the control decision abstain used in (3.3) and Defn. 3C6.2. Specifically,
other than indicating a supervisor’s intention to assert no influence over the fused

36

3C Epistemic Expressions of decentralized control conditions

decision, there is a kind of conditional decision— the name is coined by Yoo and
Lafortune [YL04]— but this analysis shows that conditional decisions exist since the
dawn of decentralized control, when the first decentralized architecture, the C&P
architecture, is studied [RW92].

The conditional decision is associated with higher-order knowledge: not only can
a supervisor introspect its own knowledge, but it can also rely on the knowledge
of other supervisors. Specifically, taking the expression (3.12.3) and (3.16) as
an example, it says that Supervisor i can “conditionally enable” the event σ, as it
knows, if enabling σ is a mistake, there will be some other Supervisor j to correct its
mistake by disabling σ. Since in this case we would like Supervisor j’s decision to
override that of Supervisor i, Supervisor i’s decision must be “weaker”, which is to
be formally reflected in the fusion rule. Similarly, the expression (3.17) talks about
the use of a “conditionally disable” control decision. We denote the conditional
enable (resp., disable) decision as weak on (resp., weak off).

Therefore, although historically the C&P architecture is introduced first [RW90],
with the D&A architecture derived as its dual [PKK97] and C&P∧D&A architecture
and C&P∨D&A derived as Boolean combinations of the previous two, we propose a
different perspective regarding the four architectures.

Recall what we have interpreted in Section 3C5: in the C&P∧D&A architecture
there are two control decisions on and off dedicated to express the intent of a
supervisor’s certain wish to disable or enable an event, whereas the third control
decision abstain has no role in shaping the fused decision, as we have demonstrated
that, when C&P∧D&A co-observability holds, never will all supervisors issue the
decision abstain so that at least one of the supervisors will issue either on or off.
Notice how the expression (3.9) corresponds with (3.11.1) and (3.11.2).

In Section 3C1 (resp., Section 3C2), we have seen that in the C&P (resp., D&A)
architecture, only one absolute control decision is explicitly used: off (resp., on),
which is traditionally written as 0 (resp., 1). The other absolute control decision
is in fact not lost, unlike what (3.3) (resp., (3.4)) seems to be suggesting. We
see from (3.12) (resp., a similar expression we did not explicitly give), that both
absolute control decisions are present, and that the C&P (resp., D&A) architecture
can be obtained by adding a “conditionally enable” (resp., “conditionally disable”)
decision to the C&P∧D&A architecture. What happened in Section 3C1 (resp.,
Section 3C2), when we were interpreting the more compact expressions, is that the
absolute control decision on (resp., off) is “lost”, because its semantics coincide
with that of both the “conditionally enable” (resp., “conditionally disable”) decision
and the “abstain” decision, in terms of how they shape the fused decision. Hence
in the traditional notation, the decision 1 (resp., 0) plays three distinct roles; the
presentation in Section 3C1 (resp., Section 3C2) instead denotes this decision as
abstain to emphasize its distinction from the other decision.

37

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

To understand more clearly why we can aggregate the three roles into one control
decision, let us coalesce the aforementioned three roles into the conditional decision
instead of into the abstain decision. Then, since whenever the event shall be enabled
(resp., disabled), no supervisor would issue the absolute decision off (resp., on),
therefore the conditional decision will not be overridden, hence there is no harm
to use the conditional decision instead of the more explicit absolute decision. Also,
expression (3.12) (resp., a similar expression we did not explicitly give) says never
will all supervisors abstain. Then the “abstain” decision will always be overridden,
by either the conditional decision or the absolute decision, hence the conditional
decision can safely be conflated with the role to signify “abstaining”.

To conclude briefly, in the C&P (resp., D&A) architecture there are semantically
four distinct control decisions, where three of the decisions are represented jointly.
Hence traditionally the control decisions are represented as binary values and the
fusion rule is taken to be Boolean operations.

Lastly we see that the C&P∨D&A architecture is obtained by adding the other
conditional decision to either the C&P architecture or the D&A architecture. Hence,
there are semantically five distinct control decisions. Moreover, the expression
(3.18) guarantees never will all supervisors abstain.

Looking back to the alternative interpretation in Section 3C6, there were only three
control decisions. This is because whenever C&P∨D&A co-observability is satisfied,
the two different kinds of conditional decisions will never be simultaneously issued,
together with the fact that never will all supervisors abstain, these three decisions
were aggregated into abstain in Section 3C6.

Therefore, we finally see what makes it possible to “default” the decision for an
event when all supervisors abstain in Section 3C6. Very informally, if the language
is C&P∨D&A co-observable, the supervisors knows so, and they also know to which
default an event should be assigned, therefore, the supervisors can use a suitable
conditional decision to express that knowledge, while reserving the abstain decision
specifically to when they do not intend to shape the fused decision.

We noticed, with Defn. 3C6.2 and the interpretation of “default” decisions, a “default”
has to be chosen a priori for each event; whereas with Defn. 3C6.5, we have a richer
coding space: two conditional decisions. Then we realized that in the C&P∨D&A
architecture for each event one has to choose only one of the two conditional
decisions. Removing the restriction on the condition decisions leads to a generalized
C&P∨D&A architecture, whose condition is given as

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=
∨
i∈Nσ

Ki(¬σE) (3.19.1)

38

3C Epistemic Expressions of decentralized control conditions

∨
∨
i∈Nσ

Ki(¬σG ∨ σE) (3.19.2)

∨
∨
i∈Nσ

Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE)) (3.19.3)

∨
∨
i∈Nσ

Ki(σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE)) (3.19.4)

For the subsequent discussion, we refer to the architecture as generalized C&P∨
D&A architecture, and its condition generalized C&P∨D&A co-observability.

It is obvious that each of the four lines of the expression (3.19) corresponds to
one distinct control decision, which we call off, on, weak off, and weak on, with
the additional decision abstain1. We would like to emphasize that the correspon-
dence among lines of the condition describing the local property of a plant’s state
facilitating a feasible control, the reasoning of the exact control decision choices
of the supervisors, and the informal interpretation of the semantics of the control
decisions. This correspondence is a major principle followed by the work of Ritsuka
and Rudie [RR23].

This analysis also suggests that the requirement of not-all-abstaining is superfluous:
it can always be achieved by adding higher levels of inferences 2 using the same
technique we demonstrated here. Since admitting the not-all-abstaining require-
ment occasionally makes the discussion simpler, we opt for admitting it on those
occasions.

3C7 Local Observability

Definition 3C7.1 (Observability [LW88])
The prefixed language L(E) is observable with respect to Pi and Σi,c whenever for
any s, s′ ∈ L(E) and any σ ∈ Σi,c, we have

Pi(s) = Pi(s
′) ∧ sσ ∈ L(E) ∧ s′σ ∈ L(G) ⇒ s′σ ∈ L(E)

1For detailed discussion on the control decisions weak off and weak on, see the works by Yoo and
Lafortune [YL04] and Ricker and Rudie [RR07] and Ritsuka and Rudie [RR23] and Ritsuka and
Rudie [RR21]. Note that Yoo and Lafortune [YL04] and Ricker and Rudie [RR07] use different
names for the control decisions.

2The notion of higher levels of inferences is discussed by Kumar and Takai [KT05]. A visualiza-
tion and some supplements are presented by Ritsuka and Rudie [RR21], where the epistemic
interpretation is also informally discussed.

39

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

Definition 3C7.2 (Local observability [TKU05])
The prefixed language L(E) is locally observable whenever L(E) is observable with
respect to Pi and Σi,c for all i ∈ N .

Local observability is equivalent to

∀ i ∈ N . ∀σ ∈ Σi,c . ∀ s, s′ ∈ L(E) .

Pi(s) = Pi(s
′) ∧ sσ ∈ L(E) ∧ s′σ ∈ L(G)

⇒ s′σ ∈ L(E)

(3.20)

On the one hand, (3.20) is equivalent to

∀σ ∈ Σc . ∀ s ∈ L(E), { si ∈ L(E) }i∈Nσ .

[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ sσ ∈ L(E)

⇒
∧
i∈Nσ

siσ ∈ L(G)

⇒ siσ ∈ L(E)

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ σE
⇒
∧
i∈Nσ

Ki(¬σG ∨ σE)

This is only half the story. On the other hand, by exploiting the symmetry between s
and s′, with a different approach this time, the expression (3.20) is also equivalent
to

∀σ ∈ Σc . ∀ s ∈ L(E), { si ∈ L(E) }i∈Nσ .

[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ sσ ∈ L(G) ∧ sσ ̸∈ L(E)

⇒
∧
i∈Nσ

siσ ̸∈ L(E)

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∧
i∈Nσ

Ki(¬σE)

40

3C Epistemic Expressions of decentralized control conditions

Together, we have

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=

σG ∧ σE
⇒
∧
i∈Nσ

Ki(¬σG ∨ σE)

∧

σG ∧ ¬σE
⇒
∧
i∈Nσ

Ki(¬σE)

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ⇒

σE ⇒

∧
i∈Nσ

Ki(¬σG ∨ σE)

∧¬σE ⇒
∧
i∈Nσ

Ki(¬σE)

 (3.21)

or more compactly,

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ⇒

∧
i∈Nσ

Ki(¬σG ∨ σE)

∨
∧
i∈Nσ

Ki(¬σE)

 (3.22)

The epistemic expression suggests immediately that local observability is stronger
than C&P∧D&A co-observability: the latter requires at least one supervisor capable
making the correct decision, while the former requires every supervisor capable
making the correct decision. Another way is to regard local observability as the
condition for the architecture similar to the C&P∧D&A architecture except the
control decision abstain is removed.

Similar to the case of C&P∧D&A co-observability, the σG ⇒ . . . is superfluous and
can be removed.

3C8 Strong Local Observability

Definition 3C8.1 (Strong Observability [TKU05])
The prefixed language L(E) is strongly observable with respect to Pi and Σi,c

41

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

whenever for any s, s′ ∈ L(G) and any σ ∈ Σi,c, we have

Pi(s) = Pi(s
′) ∧ sσ ∈ L(E) ∧ s′σ ∈ L(G) ⇒ s′σ ∈ L(E)

Definition 3C8.2 (Strong Local Observability [TKU05])
The prefixed language L(E) is strongly locally observable whenever L(E) is strongly
observable with respect to Pi and Σi,c for all i ∈ N .

Following the same strategy of deriving an epistemic of local observability, strong
local observability is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒

∧
i∈Nσ

Ki(¬σG ∨ σE)

∨
∧
i∈Nσ

Ki(¬σE)

 (3.23)

Again, the difference between strong local observability (3.23) and local observabil-
ity (3.22) is at the Kripke structures I and I, or more specifically, the accessibility
relations ∼i and ≃i. More is required for an agent to “know” something under
the interpretation I than under the interpretation I. The argument is exactly the
same as we have made in Section 3C3 Informally, strong local observability requires
correct control decision even at illegal states. This is more than necessary since
illegal states are not reachable if the language is locally observable and hence the
desired control requirement can be met. This is exactly how much stronger strong
local observability is than local observability.

A seeming generalization of strong local observability is

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒
∧
i∈Nσ

[
Ki(¬σG ∨ σE)

∨Ki(¬σE)

]
(3.24)

However, this is equivalent to strong local observability, since (I, w) ̸|= Ki(¬σG ∨
σE) ∧Kj(¬σE).

3C9 Strong C&P∧D&A co-observability

We define a notion of strong C&P∧D&A co-observability, which is to C&P∧D&A co-
observability as strong C&P co-observability is to C&P co-observability.

42

3C Epistemic Expressions of decentralized control conditions

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒

∨
i∈Nσ

Ki(¬σG ∨ σE)

∨
∨
i∈Nσ

Ki(¬σE)

 (3.25)

From the epistemic expressions we can infer immediately, that strong C&P∧D&A co-
observability is stronger than C&P∧D&A co-observability, as intended. Moreover,
strong C&P∧D&A co-observability is weaker than strong local observability, just
as C&P∧D&A co-observability is weaker than local observability. We therefore
appreciate the epistemic expressions for providing such apparentness.

3C10 Weak Co-normality

Weak co-normality is defined in terms of the following modified projection func-
tion:

Definition 3C10.1 (Modified Projection Function [RW90])
Define the modified projection function P̃i : Σ

∗ → Σ∗
i,oΣ ∪ {ε} as

P̃i(s) =

{
ε, if s = ε

Pi(s
′)σ, if s = s′σ

that is, P̃i behaves like Pi except it does not erase the last event of the string s, when
s is not empty.

Then weak co-normality can be defined as follows:

Definition 3C10.2 (Weak Co-normality [TKU05])
The prefixed language L(E) is weakly co-normal whenever[⋃

i∈N

P̃−1
i P̃i(L(E)) ∩ L(G)

]
⊆ L(E)

Note the inclusion in the other direction trivially holds.

The language L(E) is weakly co-normal iff

∀ s ∈ Σ∗ .
[
s ∈ L(G) ∧ ∃ i ∈ N .

[
s ∈ P̃−1

i P̃i(L(E))
]]

⇒ s ∈ L(E)

43

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

which is equivalent to

∀ s ∈ Σ∗ . ∃ i ∈ N .
[
s ∈ P̃−1

i P̃i(L(E)) ∧ s ∈ L(G)
]
⇒ s ∈ L(E)

Moving the existential quantifier out of the implications, we have equivalently

∀ s ∈ Σ∗ . ∀ i ∈ N . s ∈ P̃−1
i P̃i(L(E)) ∧ s ∈ L(G) ⇒ s ∈ L(E)

which is equivalent to

∀ s ∈ Σ∗ . ∀ i ∈ N .
[
∃ s′ ∈ L(E) . P̃i(s) = P̃i(s

′)
]
∧ s ∈ L(G) ⇒ s ∈ L(E)

Moving the existential quantifier out of the implications, we have equivalently

∀ s, s′ ∈ Σ∗ . ∀ i ∈ N . P̃i(s) = P̃i(s
′) ∧ s′ ∈ L(E) ∧ s ∈ L(G) ⇒ s ∈ L(E)

Since for any i it is always the case that P̃−1
i P̃i({ ε }) = { ε }, hence we only need to

consider non-empty strings. Therefore, the expression above is equivalent to

∀ s, s′Σ∗ . ∀σ ∈ Σ . ∀ i ∈ N .

P̃i(sσ) = P̃i(s
′σ) ∧ s′σ ∈ L(E) ∧ sσ ∈ L(G) ⇒ sσ ∈ L(E)

which is equivalent to

∀ s, s′ ∈ Σ∗ . ∀σ ∈ Σ . ∀ i ∈ N .

Pi(s) = Pi(s
′) ∧ s′σ ∈ L(E) ∧ sσ ∈ L(G) ⇒ sσ ∈ L(E)

(3.26)

In the same way the expression in Defn. 3C8.1 gives rise to the epistemic expression
(3.23) of strong local observability, by noticing how the restrictions of the quantifi-
cations are relaxed in (3.26) from Defn. 3C8.1, the expression (3.26) can be written
as

∀σ ∈ Σ . ∀w ∈ Q′ .

(I, w) |= σG ⇒

∧
i∈N

Ki(¬σG ∨ σE)

∨
∧
i∈N

Ki(¬σE)

 (3.27)

With this epistemic expression, we thus interpret weak co-normality as follows: for
every event, including even the controllable ones, at any state, including even the
illegal states (which the plant would never enter should correct control decisions
be enforced), every supervisor must know whether the event can be disabled or
enabled, even if that supervisor does not control that event.

44

3C Epistemic Expressions of decentralized control conditions

3C11 Summary and Discussion

To better understand the relationships between the various decentralized DES
conditions established, we first provide some shorthand for epistemic formulae. We
will then be able to capture the relationships in a figure.

The following expressions are all implicitly parameterized by an event σ known
from the context.

First, phrases regarding the desired decision of σ:

e = ¬σG ∨ σE σ can be enabled
d = ¬σE σ can be disabled
e = σE σ must be enabled
d = σG ∧ ¬σE σ must be disabled

Then, define the modal operator “someone knows. . . ”:

Sϕ = ∨i∈NσKiϕ

Define the modal operator “everyone knows. . . ”:

Eϕ = ∧i∈NσKiϕ

With an agent i known from the context, define a variant of the modal operator
“someone knows” as “some other one (other than i) knows. . . ”:

Oϕ = ∨j∈Nσ
j ̸=i

Kjϕ

Hence, in a condition the presence of the phrases Se / Ee, Sd / Ed, S(e ⇒ Oe),
S(d ⇒ Od) indicates the availabilities of the control decisions on, off, weak off,
weak on, respectively.

With these shorthands, we summarize the epistemic expressions of the co-observ-
ability conditions and related variations in Fig. 3.2.

45

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ S(e ⇒ Oe) ∨ S(d ⇒ Od)

generalized C&P∨D&A co-observability (3.19)

∀σ ∈ Σc . ∃ϕ ∈ { e, d } .
∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ S(ϕ ⇒ Oϕ)

C&P∨D&A co-observability (3.18)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ S(d ⇒ Od)

C&P co-observability (3.12)

∀σ ∈ Σc . ∃ϕσ ∈ { e, d } .
∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ ϕ

C&P∨D&A co-observability (3.11)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ S(e ⇒ Oe)

D&A co-observability

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= d ⇒ Sd

C&P co-observability∗ (3.3)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= e ⇒ Se

D&A co-observability∗ (3.4)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= e ⇒ Se

∧ d ⇒ Sd

C&P∧D&A co-observability (3.8)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= e ⇒ Ee

∧ d ⇒ Ed

local observability (3.22)

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= d ⇒ Dd

strong C&P co-observability (3.6)

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= e ⇒ Se

strong D&A co-observability (3.7)

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= e ⇒ Se

∧ d ⇒ Sd

strong C&P∧D&A co-observability (3.25)

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= e ⇒ Ee

∧ d ⇒ Ed

strong local observability (3.23)

∀σ ∈ Σ . ∀w ∈ Q′ .

(I, w) |= e ⇒ Ee

∧ d ⇒ Ed

weak co-normality† (3.27)

Figure 3.2: Lattice of co-observability conditions and related variations. Implications go in the direction of arrows.
Note: all expressions e⇒ ϕ ∧ d⇒ ψ can be contracted into ϕ ∨ ψ (see Section 3C5).
∗: the lack of one of e⇒ Se and d⇒ Sd entails the existence of a conditional decision.
†: the expression is written with i ∈ N instead of i ∈ Nσ, which distinguishes weak co-normality from strong local
observability.

46

3D Discussion on Closure Under Set Union

The logical expressions in this chapter are independent of the finite automaton used
to represent the plant, which enabled us to consider a finite, state-based Kripke
structure, as in Ricker and Rudie [RR07]. However, if one wishes to apply a similar
technique to other conditions (such as those with higher-order knowledge), then
it would have to be first ascertained that the conditions are invariant to the plant
representations. If they are not, then one could use a finer, (possibly infinite)
string-based Kripke structure as described by Ricker and Rudie [RR00], along with
corresponding definitions of relations ≃i and ∼i.

3D Discussion on Closure Under Set Union

Takai and Ushio [TU01] showed that strong local observability has the desirable
property of being closed under set union. Through our earlier discussions in
Sections 3C5 and 3C8 (see also Fig. 3.2), we realized that strong local observability
is much stronger than what suffices for the decentralized problem to be solvable.
Hence, we dedicate this section to the investigation of what makes strong local
observability closed under union, and whether there are extraneous restrictions that
can be removed to derive a weaker condition which is still closed under set union.

With the epistemic interpretation, we realized that strong local observability has
two constraints in addition to C&P∧D&A co-observability. One is to require more
for an agent to “know” something, through the use of the interpretation I instead
of the interpretation I. The second is to require that not just at least one, but all
supervisors are capable of making the correct decision. These two constraints are
informally reflected by the words “strong” and “local” respectively. Therefore, it is
interesting to see how removing either one of these two constraints breaks closure
under set union. Namely, we will provide intuitive understanding of why strong
C&P∧D&A co-observability (having only “strong”) and local observability (having
only “local”) are not closed under set union.

3D1 Strong C&P∧D&A Co-observability is not Closed under Set
Union

Strong C&P∧D&A co-observability is not closed under set union. To demonstrate
this, we assume that the two languages L(E1) and L(E2) are strongly C&P∧D&A co-
observable, and show that the language L(E) = L(E1) ∪ L(E2) is not necessarily
strongly C&P∧D&A co-observable, by a satisfiability problem. That is, we will inspect
the epistemic expression which expresses the strong C&P∧D&A co-observabilities

47

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

of L(E1) and L(E2) and the non- strong C&P∧D&A co-observability of L(E), and
deliberately construct a Kripke structure model of the expression.

Without loss of generality we assume that E1, E2 have been arranged to be subau-
tomata of E, and that E1, E2 and E are subautomata of G. For our purpose, we ex-
tend the Kripke structure in the obvious way, so that, for example, π(w, σE1) = true
whenever δE1(w, σ)!. Notice that [(I, w) |= σE] ⇔ [(I, w) |= σE1] ∨ [(I, w) |= σE2].

Then by the strong C&P∧D&A co-observabilities of L(E1) and L(E2), we have

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒
∧

Ek∈{E1,E2 }

∨
i∈Nσ

Ki(¬σG ∨ σEk
)

∨
∨
i∈Nσ

Ki(¬σEk
)

 (3.28)

Consider an event σ ∈ Σc, a world w ∈ Q′, construct the model so that (I, w) |= σG.
Then it is possible to deliberately construct the model so that only the cases

(I, w) |= Ki(¬σE1) (3.29)

(I, w) |= Kj(¬σE2)

hold, and they hold only for two distinct supervisors i, j ∈ Nσ.

For L(E) to be not strongly C&P∧D&A co-observable, we need that

(I, w) ̸|= Ki(¬ (σE1 ∨ σE2))

(I, w) ̸|= Ki(σG ⇒(σE1 ∨ σE2))

or equivalently, for some w′, w′′ ∈ [w]i,

(I, w′) |= σE1 ∨ σE2

(I, w′′) |= σG ∧ ¬σE1 ∧ ¬σE2

Therefore, in the presence of (3.29), we need

(I, w′) |= ¬σE1 ∧ σE2

(I, w′′) |= σG∧¬σE1 ∧ ¬σE2

Since σE2 ⇒ σG, so we need

(I, w′) |= σG ∧ ¬σE1 ∧ σE2

(I, w′′) |= σG ∧ ¬σE1 ∧ ¬σE2

48

3D Discussion on Closure Under Set Union

That is, we confuse Supervisor i with event σE2 at State we, which is indeed possible.
Similar argument applies for j as well. Therefore, as long as at State we, there is an
event observable to one of i, j but not to the other, and vice versa, the requirement
is satisfiable.

Using the satisfiability problem as guidance, we can explicitly construct the following
example. Consider two supervisors with observed event sets Σ1,o = { a }, Σ2,o = { b },
and controlled event sets Σ1,c = Σ2,c = { c }. Let Fig. 3.3 depict the automaton
G′ = G× P1(G)× P2(G). Since G′ and G happen to be isomorphic in this example,
we do not draw G separately. Let E1 mark all states in G except States 1′, 2′ (i.e.,
all states whose left side is shaded), and E2 mark all states in G except States 1′, 3′

(i.e., all states whose right side is shaded), so that E marks all states except State 1′

(i.e., all states which have any shading).

2'
2, 2'

1, 1', 2, 2'

1
1, 1', 3, 3'
1, 1', 2, 2'

1'
1, 1', 3, 3'
1, 1', 2, 2'

2
2, 2'

2, 2', 1, 1'

3'
1, 1', 3, 3'

3, 3'

3
1, 1', 3, 3'

3, 3'

Figure 3.3: The automaton G′ = G × P1(G) × P2(G). A state (qG, q
obs
1 , qobs2) is rep-

resented in the figure with q, qobs1 , qobs2 stacked vertically in that order.
States are also labelled by their equivalence classes ker ≃1 (resp., ker ≃2)
in the upper left (resp., upper right) corner.

Since in this example no event may happen at illegal states, hence strong C&P∧D&A
co-observability coincides with C&P∧D&A co-observability. We can verify that
L(E1) and L(E2) are both (strongly) C&P∧D&A co-observable. However, (strong)
C&P∧D&A co-observability of L(E) is violated at State 1, since neither supervisor
knows the correct control decision for the event c at State 1. This can be seen as
follows. Supervisor 1 confuses sequences ε and b (i.e., States 1 and 3, respectively)
and the former when followed by c is not in E but the latter when followed by c is,
hence Supervisor 1 does not know whether c should be disabled at State 1. Similarly,
Supervisor 2 confuses ε and a (i.e., States 1 and 2, respectively) and again c is illegal
but ac is legal. As a result, Supervisor 2 also does not know whether c should be
disabled at State 1. Therefore, (strong) C&P∧D&A co-observability is not closed

49

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

under union.

Intuitively, since (strong) C&P∧D&A co-observability does not require every supervi-
sor to be certain but only some to be, we are able to confuse some supervisor with
one language and all other remaining supervisors with the other language, so that
all supervisors become confused in the union language. In the example above, at
State 1, L(E1) is intended to confuse Supervisor 1 but not Supervisor 2, and L(E2) is
intended to confuse Supervisor 2 but not Supervisor 1. Moreover, L(E1) and L(E2)
are constructed so their union L(E) does not resolve confusion for Supervisors 1
and 2 since after the union enough states are still illegal that both supervisors are
confused at State 1.

3D2 Local Observability is not Closed under Set Union

We approach non-closure of local observability similarly as we did for strong
C&P∧D&A co-observability in the previous section.

Since we are dealing with two languages, and I (more specifically, ∼i) is language-
dependent, we instead use the Kripke structure I, and add the propositions wEk

, so
that π(w,wEk

) = true exactly when we ∈ QEk . Therefore, for propositional formula
ϕ involving only σG and σE, for all w ∈ Q′,

we ∈ QEk ⇒ (I, w) |= Ki(ϕ)

exactly when
(I, w) |= wEk

⇒ Ki(wEk
⇒ ϕ)

Assuming L(E1) and L(E2) are locally observable, we have

∀σ ∈ Σc . ∀w ∈ Q′ .

∧
Ek∈{E1,E2 }

(I, w) |= wEk
⇒ σG ⇒

∧
i∈Nσ

Ki(wEk
⇒ ¬σG ∨ σEk

)

∨
∧
i∈Nσ

Ki(wEk
⇒ ¬σEk

)

Since we ∈ QE exactly when we ∈ QE1 or we ∈ QE2, we have (I, w) |= wE exactly

50

3D Discussion on Closure Under Set Union

when (I, w) |= wE1 or (I, w) |= wE2 . Hence we have

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= wE ⇒ σG ⇒
∨

Ek∈{E1,E2 }

∧
i∈Nσ

Ki(wEk
⇒ ¬σG ∨ σEk

)

∨
∧
i∈Nσ

Ki(wEk
⇒ ¬σEk

)

 (3.30)

Similar to our approach in the previous section, we deliberately construct the model
so that (I, w) |= wE ∧ σG and the only disjunction that holds is∧

i∈Nσ

Ki(wE1 ⇒ ¬σE1)

for some i ∈ Nσ. That is, we ensure that we ̸∈ QE2.

Since we desire to show that L(E) is not locally observable, we would like to
construct, for some i ∈ Nσ, some w′ ∈ [w]i, so that

(I, w) |= σG ∧ wE1 ∧ ¬wE2 ∧ ¬σE1 ∧ ¬σE2

(I, w′) |= σG ∧ wE1 ∧ wE2 ∧ ¬σE1 ∧ σE2

which requires, for that specific i, for all w′′ ∈ [w′]i = [w]i, that

(I, w′′) |= wE2 ⇒ σG ⇒ σE2

Therefore, to make it easier for us, we ensure that w′ is the only world in [w′]i = [w]i
such that (I, w′) |= wE2 ∧ σG.

Since (I, w′) |= σG ∧ wE2 ∧ σE2, it must be that for all w′′ ∈ [w′]i = [w]i, (I, w′′) |=
wE2 ⇒ ¬σG∨σE2 . Specifically, since w ∈ [w]i, (I, w) |= wE2 ⇒ ¬σG∨σE2 . Again, for
convenience, we ensure that at no other world in [w]i, we have wE2 ⇒ ¬σG ∨ σE2 .

To summarize, since we are aiming for a compact example, and since the epistemic
expression permits us to do so, the example is deliberately constructed so that there
are only two states in [w]i, for only one particular i.

Using the satisfiability problem as guidance, we can explicitly construct the following
example. Consider two supervisors with observed event sets Σ1,o = ∅, Σ2,o = { a },
and controlled event sets Σ1,c = Σ2,c = { a, c }. Let Fig. 3.4 depict the automaton
G′ = G× P1(G)× P2(G). Since G′ and G happen to be isomorphic in this example,
we do not draw G separately. Let E1 mark States 1, 2 (i.e., all states whose left side
is shaded), and E2 mark States 1, 1′ (i.e., all states whose right side is shaded), so
that E marks all states except State 2′ (i.e., all states which is somehow shaded).

51

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

1
1, 1', 2, 2'

1, 1'

1'
1, 1', 2, 2'

1, 1'

2'
1, 1', 2, 2'

2, 2'

2
1, 1', 2, 2'

2, 2'

Figure 3.4: The automaton G′ = G× P1(G)× P2(G). A state (qG, q
obs
1 , qobs2) is repre-

sented in the figure with q, qobs1 , qobs2 stacked vertically in that order. Note
that we label states by their equivalence classes, ker ∼1,E1, ker ≃1,E2

ker ∼2,E1 , ker ≃2,E2 in the upper left, upper right, lower left, lower right
corners.

52

3D Discussion on Closure Under Set Union

We can verify that L(E1) and L(E2) are both locally observable. However, local
observability of L(E) is violated at State 2, since Supervisor 1 does not know the
correct control decision for the event c at States 1 and 2. This can be seen as follows.
Supervisor 1 confuses sequences ε and a (i.e., States 1 and 2, respectively) and the
former when followed by c is not in E but the latter when followed by c is, hence
Supervisor 1 does not know whether c should be disabled at State 1. Therefore,
local observability is not closed under union.

Intuitively, restricting the quantification of w ∈ Q′ to exclude worlds such that we

is not in, say, QE2, makes the supervisors vulnerable at states that are otherwise
reachable in the union language (since if we ∈ QE1, then we ∈ QE). Notice how, in
the example above, State 2 is not in E2, yet created confusion when brought in to E
by E1.

3D3 Strong Local Observability is Closed under Set Union

Although it has already been proven that strong local observability is closed under
set union [TU02], here we are interested in seeing how we were able to construct
the counterexamples in the previous two sections, and how strong local observability
would prevent us doing so.

Suppose that L(E1) and L(E2) are strongly locally observable, and we derive

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒
∧

Ek∈{E1,E2 }

∧
i∈Nσ

Ki(¬σG ∨ σEk
)

∨
∧
i∈Nσ

Ki(¬σEk
)

 (3.31)

Compare (3.31) with (3.28) and (3.30). What allowed us to construct the coun-
terexamples are specific disjunctions in (3.28) and (3.30), which are changed to
conjunctions in (3.31).

3D4 Revisiting Strong C&P∧D&A Co-observability

In Section 3D1 we demonstrated that strong C&P∧D&A co-observability is not closed
under union. That is, given two strongly C&P∧D&A co-observable languages L(E1)
and L(E2), their union L(E) = L(E1)∪L(E2) is not necessarily synthesisable under
the C&P∧D&A architecture.

53

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

However, Section 3D1 does not claim that the language L(E) is not synthesisable at
all. In fact, since any strongly C&P∧D&A co-observable language is also strongly
D&A co-observable, and strong D&A co-observability is closed under union, it follows
that given two strongly C&P∧D&A co-observable languages L(E1) and L(E2), their
union L(E) = L(E1) ∪ L(E2) is synthesisable under the D&A architecture3.

Then it is interesting to ask, given that D&A architecture suffices, whether it is also
necessary; and moreover, what D&A architecture provides to facilitate the synthesis
of the union of two strongly C&P∧D&A languages.

Assuming strong C&P∧D&A co-observability of two languages L(E1) and L(E2), we
perform a case analysis for expression (3.28).

Case 1: if at w we have Ki(¬σG ∨ σE1) for some i ∈ Nσ, then we can derive

Ki(¬σG ∨ (σE1 ∨ σE2))

and thus
Ki(¬σG ∨ σE)

Case 2: if at w we have Ki(¬σE1) for some i ∈ Nσ,

Now consider two separate cases.

Case 2.1: if at all w′ ∈ [w]i, whenever σG holds we have either Ki(¬σG ∨ σE2) or
Ki(¬σE2), then we have two cases:

Case 2.1.1: if at some w′ ∈ [w]i such that σG holds, we have Ki(¬σG ∨ σE2), then
we also have Ki(¬σG ∨ (σE1 ∨ σE2)), that is, Ki(¬σG ∨ σE), which must hold at w
as well.

Case 2.1.2: if at some w′ ∈ [w]i such that σG holds, we have Ki(¬σE2), then since
Ki(¬σE1) holds at w′ as well, we have Ki(¬σE1 ∧ ¬σE2), that is, Ki(¬(σE1 ∨ σE2)),
and hence Ki(¬σE), which must hold at w as well.

Case 2.2: if at none of the w′ ∈ [w]i such that σG holds, we have either Ki(¬σG∨σE2)
or Ki(¬σE2), then by (3.28), we have either Kj(¬σG ∨ σE2) or Kj(¬σE2) for some
j ∈ Nσ, where j must be different from i. Then consider an arbitrary w′ ∈ [w]i such

3This result gives us an inspiration: given two languages L(E1) and L(E2) synthesisable in the
architecture A, we should not confine ourselves in synthesizing the union language L(E) in the
architecture A, but instead be willing to look for an alternative architecture B in which we can
synthesize L(E). If we let all architectures be ordered by their strength, we’d then like to ask:
does there exist a supremal architecture?

54

3E Conclusion

that σG holds (for otherwise the result follows vacuously). We have two cases to
consider here.

Case 2.2.1: if at w′ we have Kj(¬σG ∨ σE2), then with a similar argument as case 1,
we have Kj(¬σG ∨ σE), and hence automatically σE ⇒ Kj(¬σG ∨ σE).

Case 2.2.2: if at w′ we have Kj(¬σE2), then we have ¬σE1 ∧ ¬σE2. That is,
¬(σE1 ∨ σE2), hence, ¬σE. Thus vacuously σE ⇒ Kj(¬σG ∨ σE).

Together, for case 2.2, at any w′ ∈ [w]i we have σE ⇒ Kj(¬σG ∨ σE). Thus at w we
have Ki(σE ⇒ Kj(¬σG ∨ σE)).

Together, we have

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒

∨
i∈Nσ

Ki(¬σG ∨ σE)

∨
∨
i∈Nσ

Ki(¬σE)

∨
∨
i∈Nσ

Ki(σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE))

Following an approach similar to how we proved Thm. 3C6.3, we see the expression
above is equivalent to strong D&A co-observability. Hence, given two languages
L(E1) and L(E2), if they are strongly C&P∧D&A co-observable, then their union
L(E) must be strongly D&A co-observable. That is, the D&A architecture is indis-
pensable to the synthesis of the union of two strongly C&P∧D&A co-observable
languages.

3E Conclusion

This chapter presents epistemic characterizations of co-observability conditions.
Such characterizations provide more intuitive understanding of these conditions.
Closures under set union of some of the conditions are also discussed, where we
provide a systematic approach to find counterexamples.

55

3 Epistemic Interpretations of Decentralized Discrete-Event System Problems

References

[Cie+88] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. “Supervisory
control of discrete-event processes with partial observations”. In: IEEE
Transactions on Automatic Control 33.3 (Mar. 1988), pp. 249–260. DOI:
10.1109/9.402. [cit. on p. 18].

[KT05] R. Kumar and S. Takai. “Inference-based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, 2005. DOI: 10.1109/CDC.2005.1582701. [cit. on p. 39].

[LW88] F. Lin and W. M. Wonham. “On observability of discrete-event systems”.
In: Information Sciences 44.3 (Apr. 1988), pp. 173–198. DOI: 10.1016/
0020-0255(88)90001-1. [cit. on p. 39].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion and supervi-
sor synthesis in decentralized discrete-event systems”. In: Proceedings
of the American Control Conference. IEEE, 1997. DOI: 10.1109/ACC.
1997.608978. [cit. on p. 17. 18. 19. 25. 37].

[RR00] S. L. Ricker and K. Rudie. “Know means no: Incorporating knowledge
into discrete-event control systems”. In: IEEE Transactions on Automatic
Control 45.9 (2000), pp. 1656–1668. DOI: 10.1109/9.880616. [cit. on
p. 23. 24. 47].

[RR07] S. L. Ricker and K. Rudie. “Knowledge Is a Terrible Thing to Waste:
Using Inference in Discrete-Event Control Problems”. In: IEEE Trans-
actions on Automatic Control 52.3 (Mar. 2007), pp. 428–441. DOI:
10.1109/TAC.2007.892371. [cit. on p. 24. 39. 47].

[RR21] K. Ritsuka and Karen Rudie. “A Visualization of Inference-Based Super-
visory Control in Discrete-Event Systems”. In: 2021 60th IEEE Confer-
ence on Decision and Control (CDC). IEEE, Dec. 2021. DOI: 10.1109/
cdc45484.2021.9683210. [cit. on p. 39].

[RR23] K. Ritsuka and K. Rudie. Do What You Know: Coupling Knowledge with
Action in Discrete-Event Systems. Submitted for publication. 2023. [cit.
on p. 17. 23. 26. 31. 32. 33. 34. 39].

[RW87] P. J. Ramadge and W. M. Wonham. “Supervisory Control of a Class of
Discrete Event Processes”. In: SIAM Journal on Control and Optimiza-
tion 25.1 (Jan. 1987), pp. 206–230. DOI: 10.1137/0325013. [cit. on p.
23].

[RW90] Karen Rudie and W. Murray Wonham. “The infimal prefix-closed and
observable superlanguange of a given language”. In: Systems & Control
Letters 15.5 (Dec. 1990), pp. 361–371. DOI: 10.1016/0167-6911(90)
90059-4. [cit. on p. 37. 43].

56

https://doi.org/10.1109/9.402
https://doi.org/10.1109/CDC.2005.1582701
https://doi.org/10.1016/0020-0255(88)90001-1
https://doi.org/10.1016/0020-0255(88)90001-1
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/9.880616
https://doi.org/10.1109/TAC.2007.892371
https://doi.org/10.1109/cdc45484.2021.9683210
https://doi.org/10.1109/cdc45484.2021.9683210
https://doi.org/10.1137/0325013
https://doi.org/10.1016/0167-6911(90)90059-4
https://doi.org/10.1016/0167-6911(90)90059-4

References

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally: decentralized
supervisory control”. In: IEEE Transactions on Automatic Control 37.11
(1992), pp. 1692–1708. DOI: 10.1109/9.173140. [cit. on p. 17. 18. 19.
20. 37].

[TKU05] S. Takai, R. Kumar, and T. Ushio. “Characterization of co-observable
languages and formulas for their super/sublanguages”. In: IEEE Trans-
actions on Automatic Control 50.4 (Apr. 2005), pp. 434–447. DOI:
10.1109/tac.2005.844724. [cit. on p. 17. 18. 19. 27. 29. 40. 41. 42. 43].

[TU01] S. Takai and T. Ushio. “Strong co-observability conditions for decen-
tralized supervisory control of discrete event systems”. In: Proceedings
of the 40th IEEE Conference on Decision and Control. IEEE, 2001. DOI:
10.1109/cdc.2001.980821. [cit. on p. 26. 29. 47].

[TU02] Shigemasa Takai and Toshimitsu Ushio. “A modified normality condi-
tion for decentralized supervisory control of discrete event systems”.
In: Automatica 38.1 (Jan. 2002), pp. 185–189. DOI: 10.1016/s0005-
1098(01)00187-x. [cit. on p. 53].

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture for Decen-
tralized Supervisory Control of Discrete-Event Systems”. In: Discrete
Event Dynamic Systems 12.3 (2002), pp. 335–377. DOI: 10.1023/a:
1015625600613. [cit. on p. 18. 19. 31].

[YL04] T.-S. Yoo and S. Lafortune. “Decentralized Supervisory Control With
Conditional Decisions: Supervisor Existence”. In: IEEE Transactions on
Automatic Control 49.11 (Nov. 2004), pp. 1886–1904. DOI: 10.1109/
tac.2004.837595. [cit. on p. 37. 39].

57

https://doi.org/10.1109/9.173140
https://doi.org/10.1109/tac.2005.844724
https://doi.org/10.1109/cdc.2001.980821
https://doi.org/10.1016/s0005-1098(01)00187-x
https://doi.org/10.1016/s0005-1098(01)00187-x
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2004.837595

4 Do What You Know: Coupling
Knowledge with Action in
Discrete-Event Systems

An epistemic model for decentralized discrete-event systems with non-binary control
is presented. This framework combines existing work on inference-based control
decisions with existing work on formal reasoning about knowledge in discrete-event
systems. The novelty in the epistemic formalism is in providing an approach to derive
problem solvability conditions and problem solutions. The derived expressions
directly encapsulate the actions that supervisors must take. This direct coupling
between knowledge and action— in a formalism that mimics natural language—
makes it easier, when the solvability condition fails, to understand why the condition
fails and may aid in determining how the problem requirements could be revised.

4A Introduction

The emergence of networked systems, including smart vehicles, home automation,
and wearables has increased the need for decentralized supervisory control: the
concept that the control is performed by not a monolithic, but many individual
entities — or agents — separated by the environment. This chapter focuses on
systems modelled as discrete-event systems (DES).

With control actions performed jointly, a mechanism — called a fusion rule — is
needed to combine control decisions of the agents. Decentralized control of discrete-
event systems under partial observations began with allowing only Boolean control
decisions, and synthesis of the control policy has been studied when the fusion rule
is conjunctive [Cie+88; RW92], and later other fusion rules are considered [PKK97;
YL02], during which time the fusion rules can be interpreted as simply an arbiter
to resolve conflicting control decisions. Further work by Yoo and Lafortune [YL04]
extended the approach and proposed a conditional architecture to allow non-binary
control decisions with a more sophisticated fusion rule, so that supervisors can
“conditionally” turn on/off events based on the actions of other supervisors. Yoo and
Lafortune gave necessary and sufficient conditions for the existence of supervisors
[YL04] and a realization of the supervisors [YL05] in the conditional architecture.

In existing DES research, the conditions for solvability and supervisor synthesis

59

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

(when those conditions are satisfied) typically each rely on constructions that are
divorced from each other, and a similar remark applies also to their respective proofs
of correctness. The constructions appear to be creations ex nihilo, and thus do not
provide insight into how they came to be. Moreover, the formal approach used is
almost always the linguistic approach — where one reasons about strings in the
relevant language representing the DES. Verifying that the solvability conditions
are correct or that the corresponding supervisors solve the problem requires the
reader to come up with their own informal understanding and interpretation of the
conditions/constructions.

With a different formalism, Ricker and Rudie [RR07] gave an epistemic interpre-
tation to the conditional architecture, where the use of the formal language of
epistemic logic enabled one to discuss the supervisory control in an anthropomor-
phic manner, which gives a more intuitive understanding for how control decisions
are made. Their epistemic modelling resolves the drawback of the aforementioned
linguistic approach, namely the meaning of an epistemic expression is immediately
understandable at a glance, so that an expression of the form K1ϕ means “Super-
visor 1 knows ϕ”. The interpretation is only partial as their epistemic expression
only captures a weaker architecture. Moreover, in their epistemic logic formulation,
there is a tenuous connection between the solvability conditions and the actions to
be prescribed for supervisors in a construction that exploits the conditions.

In our earlier work [RR22c], we adapted Ricker and Rudie’s epistemic formalism to
the interpretation of some other commonly known architectures [Cie+88; RW92;
PKK97; YL02]. The result was fruitful, in giving concise epistemic characterizations
to the various architectures in a way such that each characterization is constituted
by a disjunction of epistemic terms, and each term corresponds to a specific control
decision. As such, the characterizations differ by only the presence or absence
of terms in the disjunction, corresponding to the presence or absence of control
decisions available in an architecture. This was achieved by reformulating an
architecture as a result of observing that some control decisions plays multiple
distinct roles.

This chapter continues our advocacy of applying epistemic formalism and interpre-
tation as an umbrella framework to the study of decentralized problems. In the
present work, we cast a standard and representative but more complex conditional
architecture in epistemic logic as well. But unlike our earlier work and any other
prior works, which simply present supervisor existence and realization and then
establish their correctness, the novelty of this work is the direct derivation of exis-
tence and realization expressions methodologically from the fusion rule. Notably,
the derivation results in a direct link between the condition that must hold for a
solution to exist and the control protocol that must be followed when the condition
holds. That is, the result has a line-by-line correspondence between the expressions
of the knowledge the supervisors must possess and the actions they must take.

60

4B Direct Derivation of Supervisor Existence and Realization for Conditional
Architecture

We have chosen to demonstrate an epistemic characterization only of the condi-
tional architecture instead of over the more general inference-based architectures
[KT07]. This choice is made as the demonstration presented here will be sufficiently
instructive for how the methodology can be routinely applied in extending the result
over the inference-based architectures. Hence here we put emphasis on the process
over the result.

4B Direct Derivation of Supervisor Existence and
Realization for Conditional Architecture

The conditional architecture of Yoo and Lafortune [YL04] admits five possible
local decisions: “enable”, “disable”, “enable if nobody disables”, “disable if nobody
enables”, and “no decision”. As argued in [RR22c], to remove the potential confusion
of a local “enable” (resp., “disable”) and a global “enable” (resp., “disable”) decisions,
we renamed the former to on (resp., off). We also give more compact names to the
conditional decisions “enable if nobody disables” and “disable if nobody enables”
and called them weak on and weak off, respectively. Finally, we consider “no
decision” as a decision and hence call it abstain.

We now present the conditional architecture from Yoo and Lafortune [YL04] as
follows. The set of control decisions is CD = {on,off,weak on,weak off, abstain }.
For each σ ∈ Σc, a default action dft ∈ { enable, disable } must be chosen as part
of the solution. By letting the collection of local decisions for σ after string s be
cd = { fi(Pi(s), σ) }i∈Nσ for short, the fusion rule fdft

σ for σ is defined as

fdft
σ (cd) =

enable if on ∈ cd, off ̸∈ cd

disable if on ̸∈ cd, off ∈ cd

enable if on ̸∈ cd, off ̸∈ cd,

weak on ∈ cd, weak off ̸∈ cd

disable if on ̸∈ cd, off ̸∈ cd,

weak on ̸∈ cd, weak off ∈ cd

dft if on ̸∈ cd, off ̸∈ cd,

weak on ̸∈ cd, weak off ̸∈ cd

(4.1.1)
(4.1.2)
(4.1.3)

(4.1.4)

(4.1.5)

Hence, a solution to the DSCOP, in addition to constructing the supervisors, also
requires that for each σ ∈ Σc one chooses either the fusion rules f enable or the fusion
rule fdisable.

61

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

Ideally, we would like to gradually derive the expressions of the problem solvability
condition and derive construction of the supervisors directly from the fusion rule.
However, as the written form of communication prevents us from doing so, we have
to give both of them a priori. Nonetheless, the development process will still be
apparent from the proof. We stress that the expressions are not creations ex nihilo,
but are obtained from the fusion rule. This process is quite methodologically, as in
every step there is only one sensible choice. Hence our methodology contrasts with
the traditional approaches, which generally involve some human cleverness.

For ease of understanding and compactness, we define the following shorthand
notation for epistemic formulae.

The following shorthand are defined in terms of σG and σE. We use over-bar instead
of the standard symbol for logical negative in expressions when it makes it clearer
to see at a glance which propositions in a compound proposition are or are not
negated.

1. σe! := σE = σG ∧ σE, reads “σ must be enabled to satisfy the control require-
ment”;

2. σd! := σG ∧ σE, reads “σ must be disabled to satisfy the control requirement”;

3. σe := σG ∨ σE = σG ⇒ σE, reads “σ can be enabled without violating the
control requirement” or alternatively, “if σ is even possible then it ought to be
enabled; otherwise, it does not matter”;

4. σd := σE, reads “σ can be disabled without violating the control requirement”,
or alternatively, “if σ is even possible then it ought to be disabled; otherwise,
it does not matter”.

Note that σd could have been defined as σG ∨ σE to parallel our definition of σe, but
since an event that is not legal is also not possible, σE implies σG already.

The following expressions are all implicitly parameterized by an event σ known
from the context.

Define the modal operator “someone knows. . . ”:

Sϕ :=
∨
i∈Nσ

Kiϕ

With a supervisor i known from the context, define a variant of the modal operator

62

4B Direct Derivation of Supervisor Existence and Realization for Conditional
Architecture

“someone knows” as “some other supervisor (other than i) knows. . . ”:

Oϕ :=
∨

j∈Nσ
j ̸=i

Kiϕ

Finally, we need the following shorthand for some frequently needed epistemic
expressions.

K0
i σe := Kiσe

K0
i σd := Kiσd

K1
i σe := Ki(σd! ⇒ Oσd)

K1
i σd := Ki(σe! ⇒ Oσe)

Although we plan to derive the solvability condition and a control policy, it is
nonetheless beneficial to first consider a tentative, but tangible proposal. Con-
sider a tentative knowledge-based control policy (Gobs

i ,KP i), where KP i is defined
according to (4.2):

KP i(w, σ) =

on if (I, w) |= K0
i σe ∧K0

i σd

off if (I, w) |= K0
i σe ∧K0

i σd

weak on if (I, w) |= K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

weak off if (I, w) |= K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

abstain otherwise

(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)
(4.2.5)

This construction appears to be quite natural. Even without formally deriving it
from the fusion rule (4.1), one may still be able to instinctively come up with it, as
the epistemic expressions directly capture what decisions are desirable. The point
can be made stronger, if one temporarily ignores the semantics of the epistemic
formulae and focus on how the form of (4.2) parallels with that of the fusion rule
(4.1).

Clearly, the cases defining (4.2) are mutually exclusive and exhaustive. Intuitively,
one can see that the correctness of cases (4.2.1) to (4.2.4) is guaranteed by the
epistemic formulae, but since the case (4.2.5) does not involve any epistemic
expressions, a condition to ensure its correctness is needed. This condition is our
conditional-co-observability.

Definition 4B.1
The Kripke structure I is said to be conditional-co-observable whenever for each
σ ∈ Σc, there is a choice of ∗ from e and d for this σ, such that for any string

63

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

s ∈ L(E), where w is the world s leads to, it must be that

(I, w) |=

[∧
i∈Nσ

K0
i σd ∧K0

i σe ∧K1
i σd ∧K1

i σe

]
⇒ σ∗,

i.e.,

(I, w) |= S0σe (4.3.1)
∨ S0σd (4.3.2)
∨ S1σe (4.3.3)
∨ S1σd (4.3.4)
∨ σ∗ (4.3.5)

As it will turn out, whenever Defn. 4B.1 holds, a solution to the DSCOP exists and
can be expressed as (4.2). While (4.3) resembles the expressions Ricker and Rudie
[RR07] had, it is not ideal as its last disjunction is not an epistemic formula, and
hence not very illuminating, since it doesn’t describe the knowledge that an agent
must possess. Ultimately we will replace (4.3.5) with an epistemic formula.

The last two ingredients we need before showing that conditional-co-observable
is necessary and sufficient to solve DSCOP are two characterizations of “solving”
DSCOP. The first characterization arises by noticing that the definition of L(fN/G)
(Defn. 2A1.1) is such that L(fN/G) = L(E), i.e., the joint supervision fN solves the
DSCOP, iff

s ∈ L(E) ∧ sσ ∈ L(G) ∧ σ ∈ Σuc

⇒ sσ ∈ L(E) (4.4.1)
s ∈ L(E) ∧ sσ ∈ L(G) ∧ σ ∈ Σc

⇒ fN (s, σ) = enable ⇒ sσ ∈ L(E) (4.4.2)
∧ fN (s, σ) = disable ⇒ sσ ̸∈ L(E) (4.4.3)

Equation (4.4) expresses that a solution to DSCOP must ensure that uncontrollable
events do not lead to illegality (4.4.1), and that if a controllable event is allowed
to happen (4.4.2), it leads to a legal string; and if it is prevented from happening
(4.4.3), it leads to an illegal string.

On the other hand, we also have that L(fN/G) = L(E) iff

64

4B Direct Derivation of Supervisor Existence and Realization for Conditional
Architecture

s ∈ L(E) ∧ sσ ∈ L(G) ∧ σ ∈ Σuc

⇒ sσ ∈ L(E) (4.5.1)
s ∈ L(E) ∧ sσ ∈ L(G) ∧ σ ∈ Σc

⇒ sσ ∈ L(E) ⇒ fN (s, σ) = enable (4.5.2)
∧ sσ ̸∈ L(E) ⇒ fN (s, σ) = disable (4.5.3)

Equation (4.5) expresses that a solution to DSCOP must ensure that uncontrollable
events do not lead to illegality (4.5.1), and that if a controllable event is legal, it
is allowed to happen (4.5.2), and if it is illegal, it is prevented from happening
(4.5.3).

We can now proceed to the development of our main result.

Theorem 4B.2
In the conditional architecture, there exists a set N of n supervisors that solves the
DSCOP iff I is controllable and conditional-co-observable.

Moreover, whenever a solution exists, the knowledge-based control policy in (4.2)
is a solution.

Again, we emphasize that for the sake of the statement, we take (4.2) and Defn. 4B.1
as given. But we will actually derive them during the proof.

Informally, for the necessity part of the proof, we will perform a case analysis on
all possible combinations of local control decisions after a string, i.e., on (4.1).
The fused decision will imply some global properties of the string, i.e., whether
it can be followed by a legal/illegal event, as for this direction, we are assuming
the supervisors solve DSCOP. From the local decisions, we can derive epistemic
characterizations of the supervisors’ knowledge in the following way. By feasibility,
we know that a supervisor has to issue an identical decision for other strings
indistinguishable from the actual string. Then it is possible to extrapolate the
possible global decisions at those strings, and hence their global properties. The
common global properties of all these strings is then the supervisor’s knowledge.
After we exhaust all combinations of local control decisions, we will obtain the
proposed epistemic expression of conditional-co-observability.

We now provide our formal proof.

Proof.

Conditional-coobservability is necessary (⇒)

65

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

For the proof of necessity, we use (4.4) as the characterization of what it means to
solve DSCOP. Condition (4.4.1) directly implies controllability. What is left is to
show that (4.4.2) and (4.4.3) imply conditional-co-observability.

Suppose there exists such a set N = (f1, . . . , fn) of n supervisors, such that (4.4.2)
and (4.4.3) hold.

Although the proof would be much easier by showing that if otherwise conditional-
co-observability fails, then a contradiction arises, for our purpose, we explicitly
derive conditional-co-observability as a necessity.

Consider some s ∈ L(E), σ ∈ Σc such that sσ ∈ L(G). Let w be the world s leads to;
since s ∈ L(E), we ∈ QE.

Now we perform a case analysis on the possible combinations of local decisions, in
the same order as specified in the fusion rule (4.1).

In each case there will be a specific supervisor i that we will focus our attention
on. For this supervisor we will consider strings s′ ∈ L(E) such that Pi(s

′) = Pi(s)
and consider the global decision fN (s′, σ). Either the global decision at s′ is the
same as that at s, or they differ. We will further assume that s′σ ∈ L(G) so that
the difference, if present, is material by (4.4). Since the string s′ is arbitrary, if we
can conclude proposition ϕ for s′, we can conclude it for all w′ ∈ [w]i, and hence
conclude Kiϕ for w.

Since the control policy for each controllable event is designed individually [RR22a],
for brevity, going forward when we speak of supervisors i, j, we implicitly mean
i, j ∈ Nσ, i.e., supervisor i and supervisor j each controls σ.

Case A. Suppose that for some i, the local decision is fi(Pi(s), σ) = on, and
consequently by (4.1.1) the fused decision must be fσ(s) = enable.

By feasibility, it must be that fi(Pi(s
′), σ) = on as well, and consequently

fσ(s
′) = enable as well. That is, in this case the global decision at s′ must

be the same as at s. Because we assumed the supervisors solve the DSCOP,
it must be that s′σ ∈ L(G) ⇒ s′σ ∈ L(E) by (4.4.2), which is equivalent to
s′σ ̸∈ L(G) ∨ s′σ ∈ L(E). Hence, for this particular agent i, at world w, we
have

Kiσe = K0
i σe

and

¬Kiσd = K0
i σd

66

4B Direct Derivation of Supervisor Existence and Realization for Conditional
Architecture

holds. Hence
fi(Pi(s), σ) = on ⇒ K0

i σe ∧K0
i σd (4.6)

Also, from K0
i σe we have S0σe, which is exactly (4.3.1).

Case B. The case in which for some i, fi(Pi(s), σ) = off is reasoned analogously
to Case A, from which it follows that

fi(Pi(s), σ) = off ⇒ K0
i σe ∧K0

i σd (4.7)

and (4.3.2).

Note that in Case A and Case B, when defining the control protocol (4.2) we
explicitly excluded the situation where K0

i σe ∧K0
i σd holds at world w, which

is equivalent to Ki(σe ∧ σd) and implies that σe ∧ σd, i.e., (¬σG ∨ σE) ∧ ¬σE,
which, by disjunctive syllogism (modus tollendo ponens), is in turn equivalent
to ¬σG. Although this contradicts the fact that sσ ∈ L(G) anyway and thus
is redundant, we nonetheless choose to preclude K0

i σe ∧ K0
i σd explicitly in

(4.2.1) and (4.2.2).

Case C. Suppose that for some i, fi(Pi(s), σ) = weak on, but for no j, fj(Pj(s), σ) =
on,off,weak off. Consequently by (4.1.3) the fused decision must be fσ(s) =
enable.

Suppose that the global decision at s′ differs from that at s, i.e., suppose
fN (s′, σ) = disable, which is equivalent to s′σ ̸∈ L(E) by (4.4.3). Moreover,
suppose that the difference is material, i.e., suppose s′σ ∈ L(G). That is, we
have assumed that σd!. Then, since supervisor i’s decision for s′ cannot be
different from that supervisor’s decision for s— by feasibility, there must be
some supervisor j other than i such that supervisor j’s decision for s′ differs
from that supervisor’s decision for s, i.e., fj(Pj(s

′), σ) = off. By the argument
in case B applied to s′, we have K0

j σd (which is O0σd because j ̸= i) hold at
w′, provided the assumption that σd! holds at w′, i.e., σd! ⇒ O0σd. Hence, for
this particular agent i, at world w, we have Ki(σd! ⇒ O0σd) = K1

i σe, i.e.,

fi(Pi(s), σ) = weak on ⇒ K1
i σe. (4.8)

Further, from K1
i σe we have

S1σe

(i.e., (4.3.3)) holds at w.

Case D. The case in which for some i, fi(Pi(s), σ) = weak off, but for no j,
fj(Pj(s), σ) = on,off,weak on is reasoned analogously as in Case C. We can
derive that

fi(Pi(s), σ) = weak off ⇒ K1
i σd (4.9)

and (4.3.4).

67

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

Case E. Finally, suppose that fi(Pi(s), σ) = abstain for all i. If dft = enable =
fN (s, σ), it must be sσ ̸∈ L(G)∨sσ ∈ L(E) by (4.4.2). If dft = disable = fσ(s),
it must be sσ ̸∈ L(E) by (4.4.3), which gives ϕ = σd. Thus we derive (4.3.5).

Conditional-coobservability is sufficient (⇒)

For the proof of sufficiency, we use (4.5) as the characterization of what it means
to solve DSCOP. Controllability directly implies condition (4.5.1). What is left is
to show that whenever conditional-co-observability holds, our knowledge-based
control policy (4.2) is a solution to the problem under the required fusion rule (4.1),
i.e., it satisfies (4.5.2) and (4.5.3).

Before proceeding to the proof, as we have promised, we need to show how the
knowledge-based control policy was derived.

Recall the proof for the necessity part. Gathering (4.6) to (4.9), we have that for
any solution fi, it is necessary that

fi(Pi(s), σ) = on ⇒ K0
i σe ∧K0

i σd

fi(Pi(s), σ) = off ⇒ K0
i σe ∧K0

i σd

fi(Pi(s), σ) = weak on ⇒ K1
i σe

fi(Pi(s), σ) = weak off ⇒ K1
i σd

To recover a design of the agents, we essentially need to establish the implication in
the other direction, with the additional requirement that the cases of the definition
must be exhaustive and mutually exclusive. We attempt to establish the mutual
exclusiveness in the most obvious way: i.e., define the control protocol as (4.2). It
is clearly fully defined due to the “otherwise” clause.

Then note that conditional-co-observability is equivalent to

(I, w) |=
∨
i∈Nσ

K0
i σe ∨K0

i σd

∨K1
i σe ∨K1

i σd

∨ σ∗.

(4.10)

So, when (4.10) holds, according to (4.2), fi(Pi(s, σ)) = abstain if and only if

(I, w) |= K0
i σe ∧K0

i σd (4.11.1)

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd (4.11.2)

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd ∧ σ∗, (4.11.3)

68

4B Direct Derivation of Supervisor Existence and Realization for Conditional
Architecture

hence we can replace the “otherwise” clause in (4.2) by (4.11). We now reproduce
the knowledge-based protocol as follows:

on if (I, w) |= K0
i σe ∧K0

i σd

off if (I, w) |= K0
i σe ∧K0

i σd

weak on if (I, w) |= K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

weak off if (I, w) |= K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

abstain if (I, w) |= K0
i σe ∧K0

i σd

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd ∧ σ∗,

KP i(w, σ) =

(4.12.1)

(4.12.2)

(4.12.3)

(4.12.4)
(4.12.5)

(4.12.6)

(4.12.7)

By intentionally putting (4.11) into disjunctive normal form, we reveal two distinct
roles of the abstain decision. First, as discussed, the situation (4.11.1) cannot
happen unless sσ ̸∈ L(G). Then, (4.11.2) is the true abstaining decision, since
regardless of the legality of σ, there is always some other supervisor that can make
a correct decision. In the case of (4.11.3), since all epistemic formulae are negated,
we take, for now, that (4.11.3) expresses the situation that the supervisor is in a
“doesn’t know” situation.

To verify the correctness of our knowledge-based control protocol (4.12), we perform
a case analysis over conditional-co-observability. The trick is how to split the cases
so that in each case we can infer the local decisions. Then a natural way to proceed
is to split the cases according to the lines defining (4.12). Recall that the cases are
exhaustive given conditional-co-observability, since that is how (4.11) was obtained.

To establish (4.5.2) and (4.5.3), fix an s ∈ L(E), σ ∈ Σc such that sσ ∈ L(G). Let w
be the world s leads to. Since conditional-co-observability (4.10) holds at w, there
is a supervisor i for which K0

i σe ∨ K0
i σd ∨ K1

i σe ∨ K1
i σd ∨ σ∗ holds. Consider the

following cases, which, as argued above, are exhaustive. We will show that in each
case, (4.5.2) and (4.5.3) hold.

Case 1. If K0
i σe ∧K0

i σd (i.e., (4.12.1)), then locally we have that i issues on by
(4.12.1), and by K0

i σe globally we have sσ ∈ L(E). So (4.5.3) holds vacuously.
To show (4.5.2), it suffices to show that the fused decision is enable. We
argue that it is impossible for there to be some supervisor j that issues off. If
that were possible, we’d have K0

j σd, which, together with K0
i σe, would imply

sσ ̸∈ L(G), contradicting the assumption.

Case 2. The case K0
i σe ∧K0

i σd (i.e., (4.12.2)) is reasoned analogously to Case
1.

69

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

Case 3. If K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd (i.e., (4.12.3)), then locally we have
that i issues weak on by (4.12.3).

a) If sσ ∈ L(E), we desire that the fused decision be enable.

i. If some supervisor j issues the decision on, then as argued in Case 1,
there cannot be a third supervisor k issuing the decision off, thus the
fused decision must be enable by (4.1.1).

ii. If some j issues the decision off, then, by (4.12.2) we’d have K0
j σe ∧

K0
j σd, and the argument can be established by letting j play the role

of i in Case 2.

iii. If some j issues the decision weak off, then by (4.12.4), we have
K1

j σd, which implies that σe! ⇒
∨

k ̸=j Kkσe. Since we do have σe! by
sσ ∈ L(E), there is some k such that Kkσe. Moreover, we have that
Kkσd since sσ ∈ L(G). Then the argument can be established by
letting k play the rule of i in Case 1.

iv. Otherwise, the fused decision must be enable, as desired.

b) If sσ ̸∈ L(E), we desire that the fused decision be disable. The argument
is analogous to Case 3(a)

Case 4. The case K0
i σe ∧ K0

i σd ∧ K1
i σe ∧ K1

i σd (i.e., (4.12.4)) is reasoned
analogously to Case 3.

Case 5. The case K0
i σe ∧K0

i σd (i.e., (4.12.5)) contradicts sσ ∈ L(G) as argued.

Case 6. If K0
i σe∧K0

i σd∧K1
i σe∧K1

i σd (i.e, (4.12.6)), then locally we have that i
issues abstain by (4.12.6). Recall that by our analysis of the abstain decision,
this represents the true abstaining decision. The argument is established
analogously to Case 3 and Case 4.

Case 7. If K0
i σe∧K0

i σd∧K1
i σe∧K1

i σd∧σ∗ (i.e., (4.12.7)), then locally we have
that i issues abstain by (4.12.7). Recall that by our analysis of the abstain
decision, this represents the “doesn’t know” decision.

a) If ∗ = e, i.e., sσ ∈ L(E), we desire that the fused decision be enable. If
there is some supervisor j that issues the decision on, off, weak off, then
the fused decision is enable by an argument exactly the same as Case
3(a). If there is some supervisor j that issues the decision weak on, then
the fused decision is enable by letting j play the rule of i in Case 3. In

70

4B Direct Derivation of Supervisor Existence and Realization for Conditional
Architecture

the last case where all supervisors issue the decision abstain, the desired
fused decision can be achieved by setting dft to enable in (4.1.5).

b) The case that ∗ = d, i.e., sσ ̸∈ L(E), is argued analogously. □

We have thus completed the derivation of the problem solvability condition and a
knowledge-based control protocol from the fusion rule. Additionally, the process
is entirely methodologically and at no point requires human cleverness. We hence
propose this process as a prototypical example of a more uniform, formal approach
to study other decentralized architectures.

One drawback of the expressions (4.3.5) and (4.12.7) is that they contain the non-
epistemic term σ∗ (which becomes either σe or σd), and therefore does not provide
any insight into what knowledge an agent must possess to support the agent’s
actions. Consequently, we interpreted the situation (4.12.7) as that the supervisor
possesses no knowledge. However, we will demonstrate that it does, in fact, possess
some knowledge.

We resume the proof of Case E and show that further progression will lead to an
epistemic expression in place of (4.3.5). We start by aggregating local properties of
strings s′ indistinguishable from s to a specific supervisor i as we have done for all
other cases, so that we can obtain an epistemic expression.

Similar to the argument in Case C, suppose the global decision at s′ differs from that
at s, i.e., suppose fN (s′, σ) = disable, which is equivalent to s′σ ̸∈ L(E) by (4.5.3).
Moreover, suppose that the difference is material, i.e., suppose s′σ ∈ L(G). That
is, we have assumed σd!. Now let j be the supervisor such that fj(Pj(s

′), σ) = off
or weak off (these are the only two possibilities to get fN (s σ) = disable by (4.1)).
Applying the argument in Case B or Case C to s′ with j playing the role of i, we have
Kjσd (which is Oσd because j ̸= i) or Kj(σd! ⇒ O(σd)) (which is O(σd! ⇒ Oσd)).

Hence at w, if dft = enable, we have

K2
i σe := Ki(σd! ⇒ Oσd

∨O(σd! ⇒ Oσd));

and by a similar argument, if dft = disable, we have

K2
i σd := Ki(σe! ⇒ Oσe

∨O(σe! ⇒ Oσe)).

I.e.,
fi(Pi(s), σ) = abstain ⇒ K2

i σ∗ (4.13)

71

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

Also, we have S2σ∗.

That is, (4.3) can now be formally replaced with

(I, w) |= S0σe ∨ S0σd

∨ S1σe ∨ S1σe

∨ S2σ∗,

(4.14)

where ∗ is either e or d.

With the reformulated expression of conditional-co-observability, in exactly the same
way we obtained (4.11) in the original proof, now we can further establish that
fi(Pi(s, σ)) = abstain if and only if

(I, w) |= K0
i σe ∧K0

i σd (4.15.1)

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd (4.15.2)

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd ∧K2
i σ∗. (4.15.3)

We have discussed the meaning of the first two disjuncts in the proof. In the last
case, abstain is instead used as an even weaker version of weak on or weak off,
as indicated by the expression K2

i σ∗. But in any case, it is not entirely illustrative
to say that the supervisor “doesn’t know”, which is what Ricker and Rudie [RR07]
called the “abstain” decision.

Finally, while we only demonstrated the epistemic formalism on the conditional
architecture, the approach can be systematically extended over the more general
inference-based architectures [KT07]. One note is that as the level of inference
increases, the recursive structure of epistemic expressions KM

i and KN
i explodes

in size quickly. Hence it is not advised to explicitly expand out the expression for
evaluation, but to employ dynamic programming.

4B1 A Visualization to Aid in the Revision of Problem
Requirements

A procedure to synthesize a sublanguage is already provided by Takai and Kumar
[TK08], presented in a non-epistemic formalism. We will demonstrate, with an
example, that our epistemic logic formalism— or more specifically, the Kripke struc-
tures— can provide a visual aid to understand the approach of Takai and Kumar
[TK08]. We also adopt the same approach of Takai and Kumar [TK08] to the
synthesis of a superlanguage. While we will not pursue it in the demonstration, one
will see that the same methodology can be extended to revise the problem require-
ment to synthesize incomparable languages. We refer the reader to [RR21] for an

72

4B Direct Derivation of Supervisor Existence and Realization for Conditional
Architecture

even more compact visualization, underlying which is nonetheless the epistemic
interpretation.

Consider the following example. The set of possible events is Σ = {α1, α2, β1, β2,
γ, µ }, observable event sets are Σ1,o = {µ }, Σ2,o = { β1, β2 }, and controllable
event sets are Σ1,c = Σ2,c = { γ }. The plant G and legal language specification E
are captured in the automaton G′ = G× P1(G)× P2(G) depicted in Fig. 4.1. The
language L(E) is marked by states with double borders. Since the states of G′

are the worlds of its Kripke structure, we can embed the Kripke structure in the
representation of G′ as shown in Fig. 4.1. The problem is to determine whether
there exist two supervisors with the observable and controllable event sets given
above, such that L(fN/G) = L(E).

Let us focus on γ since it is the only controllable event. Hence we focus on states 0,
2, 3, 4, 5, since these are the states where γ can happen.

In state 4 (resp. 5), supervisor 2 can enable (resp. disable) γ. In state 0, supervisor
1 can enable γ. But in states 2, 3, which are indistinguishable to both supervisors,
since they are both in the same equivalence classes (M1M1M1 for supervisor 1 and B0B0B0 for
supervisor 2), neither supervisor 1 nor 2 can control γ unambiguously. Hence the
language L(E) is not conditional-co-observable.

The representation of G′ and the epistemic interpretation of conditional control
decisions provides guidance for how to modify the control requirement to obtain a
conditional-co-observable language.

If we are looking for a sublanguage, we can only make legal states illegal but not
vice versa. By our previous analysis, at least one supervisor is able to make a correct
control decision unambiguously in states S = {0, 1, 4, 5, 7, 8, 10}, hence all we need
to worry about are the states in the set M1M1M1 − S = B0B0B0 − S = {2, 3}. To resolve the
conflict that γ is legal at state 3 but illegal at state 2, we can make state 7 illegal.

To see how making state 7 illegal gives a conditional-co-observable sublanguage,
let’s look at states inM1M1M1 andB0B0B0. At states inM1M1M1, γ is illegal at states 2, 3, 5 but is legal
at state 4. With only binary control decisions, supervisor 1 cannot possibly make
an unambiguous decision. We can see that supervisor 2 is in a similar situation
by examining states in B0B0B0. However, with the ability to infer the knowledge of
other supervisors and the conditional decisions at their disposal, the desired control
requirement can be achieved. Suppose that supervisor 1 is an intelligent being, and
let’s imagine how the intelligent being may attempt to solve the dilemma. Consider
what if supervisor 1 were to try to guess the legality of γ after it sees µ. Clearly
this guess is not always correct, i.e., it is false at exactly state 4. But knowing that
the other supervisor can unambiguously enable γ if the plant is indeed at state 4
supervisor 1 is then able to focus on only the rest of the states in M1M1M1, and fortunately,

73

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

8
1, 2, 3, 4, 5, 6, 7, 8, 9

4, 8

2
1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 6, 7, 10

4
1, 2, 3, 4, 5, 6, 7, 8, 9

4, 810
0, 10

0, 1, 2, 3, 6, 7, 10

0
0, 10

0, 1, 2, 3, 6, 7, 10

1
1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 6, 7, 10

3
1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 6, 7, 10

5
1, 2, 3, 4, 5, 6, 7, 8, 9

5, 9

7
1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 6, 7, 10

0
0, 10

0, 1, 2, 3, 6, 7, 10

10
0, 10

0, 1, 2, 3, 6, 7, 10

1
1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 6, 7, 10

6
1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 6, 7, 10

7
1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 6, 7, 10

3
1, 2, 3, 4, 5, 6, 7, 8, 9

0, 1, 2, 3, 6, 7, 10

5
1, 2, 3, 4, 5, 6, 7, 8, 9

5, 9

9
1, 2, 3, 4, 5, 6, 7, 8, 9

5, 9

Figure 4.1: The automaton G′ = G× P1(G)× P2(G) with its corresponding Kripke
structure embedded in it. A state (qG, q

obs
1 , qobs2) is represented in the

figure with q, qobs1 , qobs2 stacked vertically in that order. The equivalence
classes are marked according to the following rule: a state is marked
at the upper left (resp. upper right) corner according to its containing
equivalence class formed by the accessibility relation ∼1 (resp. ∼2);
the symbols for the equivalence classes are deliberately chosen, so, for
instance, the states that supervisor 2 thinks the plant could be in after it
sees β1 are in the equivalence class B1B1B1.

74

4C Conclusion

its guess is correct in all of them. Hence supervisor 1 can confidently disable γ at
states in M1M1M1 unambiguously, knowing its mistake would be corrected by the other
supervisor. Similar reasoning is also carried out by supervisor 2.

The design of the fusion rule is exactly to allow the correction of mistakes. A
weak off is issued by a supervisor knowing that if disabling the event is incorrect
then another supervisor can correct the first supervisor by a definite on decision.

Formally, with state 7 made illegal, states { 2, 3 } are unambiguous. However, since
the set { 2, 3 } is a proper subset of both M1M1M1 and B0B0B0, and states in both sets M1M1M1 and
B0B0B0 remain ambiguous, the conditional decision, i.e., weak off has to be issued at
states in the set M1M1M1 (resp. B0B0B0) by supervisor 1 (resp. supervisor 2).

If it is reasonable for the problem at hand to admit a solution that is not necessarily
a sublanguage, we can also make state 6 legal too. By similar reasoning as we just
did, supervisor 1 should issue decision weak on at states 2, 3; and supervisor 2 can
issue decision on at states in the set B1B1B1, since this set is no longer ambiguous.

4C Conclusion

In this chapter, we discuss how decentralized control problems can benefit from the
use of epistemic logic.

We point out that epistemic logic can be used to discuss not only some specific
classes of DSCOP [RR00; RR07], but also it can be used more broadly to describe
other classes of decentralized supervisory control problems. The use of epistemic
formalism provides a formal approach towards describing decentralized problems,
and consequently allows mechanical derivation of problem solvability conditions and
solution constructions. The derivation also results in direct coupling between the
expression of problem solvability condition and the expression describing the control
policies. This line-by-line coupling allows us to use the same expression throughout
the discussions of proving necessary and sufficient conditions, of describing the
algorithm to construct the supervisors, and of verifying the correctness of the
algorithm.

From the forgoing discussions, we would expect other decentralized control or
diagnosis conditions could be treated in a comparable fashion. For instance, consider
the work of Kumar and Takai [KT07], which is more general than that of Yoo and
Lafortune [YL05]. We developed our epistemic expressions based on Yoo and
Lafortune [YL05] because it is simpler and thus we are able to demonstrate our key
ideas without more complex (yet not conceptually different) technical development.

75

4 Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems

The same principles demonstrated here could apply to Kumar and Takai [KT07] as
well. The only technical difference is that one would need to use a finer, (possibly
infinite) string-based Kripke structure as described by Ricker and Rudie [RR00],
along with a corresponding definition of relations ∼i.

Casting the decentralized problem the way we did makes it easier to understand
the reasoning behind various control decisions. We believe that one advantage of
our framework is that in trying to come up with solutions to future DES problems,
this framework can aid in going directly from a working supervisor solution to the
necessary and sufficient conditions that would match such a solution. Moreover, if
the constraints of some given problem are not met (and hence that problem is not
solvable as is using decentralized control), our model makes it more apparent how
to alter the constraints in a way that is meaningful for the application at hand.

References

[Cie+88] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. “Supervisory
control of discrete-event processes with partial observations”. In: IEEE
Transactions on Automatic Control 33.3 (Mar. 1988), pp. 249–260. DOI:
10.1109/9.402. [cit. on p. 59. 60].

[KT07] R. Kumar and S. Takai. “Inference-Based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: IEEE Transactions on Automatic Control 52.10 (Oct. 2007),
pp. 1783–1794. DOI: 10.1109/TAC.2007.906158. [cit. on p. 61. 72. 75].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion and supervi-
sor synthesis in decentralized discrete-event systems”. In: Proceedings
of the American Control Conference. IEEE, 1997. DOI: 10.1109/ACC.
1997.608978. [cit. on p. 59. 60].

[RR00] S. L. Ricker and K. Rudie. “Know means no: Incorporating knowledge
into discrete-event control systems”. In: IEEE Transactions on Automatic
Control 45.9 (2000), pp. 1656–1668. DOI: 10.1109/9.880616. [cit. on
p. 75].

[RR07] S. L. Ricker and K. Rudie. “Knowledge Is a Terrible Thing to Waste:
Using Inference in Discrete-Event Control Problems”. In: IEEE Trans-
actions on Automatic Control 52.3 (Mar. 2007), pp. 428–441. DOI:
10.1109/TAC.2007.892371. [cit. on p. 60. 64. 72. 75].

[RR21] K. Ritsuka and Karen Rudie. “A Visualization of Inference-Based Super-
visory Control in Discrete-Event Systems”. In: 2021 60th IEEE Confer-
ence on Decision and Control (CDC). IEEE, Dec. 2021. DOI: 10.1109/
cdc45484.2021.9683210. [cit. on p. 72].

76

https://doi.org/10.1109/9.402
https://doi.org/10.1109/TAC.2007.906158
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/9.880616
https://doi.org/10.1109/TAC.2007.892371
https://doi.org/10.1109/cdc45484.2021.9683210
https://doi.org/10.1109/cdc45484.2021.9683210

References

[RR22a] K. Ritsuka and Karen Rudie. A correspondence between control and
observation problems in decentralized discrete-event systems. 2022. arXiv:
2204.10792 [eess.SY]. [cit. on p. 66].

[RR22c] K. Ritsuka and Karen Rudie. “Epistemic interpretations of decentralized
discrete-event system problems”. In: Discrete Event Dynamic Systems
32.3 (June 2022), pp. 359–398. DOI: 10.1007/s10626-022-00363-7.
[cit. on p. 60. 61].

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally: decentralized
supervisory control”. In: IEEE Transactions on Automatic Control 37.11
(1992), pp. 1692–1708. DOI: 10.1109/9.173140. [cit. on p. 59. 60].

[TK08] Shigemasa Takai and Ratnesh Kumar. “Synthesis of Inference-Based
Decentralized Control for Discrete Event Systems”. In: IEEE Trans-
actions on Automatic Control 53.2 (Mar. 2008), pp. 522–534. DOI:
10.1109/tac.2007.915171. [cit. on p. 72].

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture for Decen-
tralized Supervisory Control of Discrete-Event Systems”. In: Discrete
Event Dynamic Systems 12.3 (2002), pp. 335–377. DOI: 10.1023/a:
1015625600613. [cit. on p. 59. 60].

[YL04] T.-S. Yoo and S. Lafortune. “Decentralized Supervisory Control With
Conditional Decisions: Supervisor Existence”. In: IEEE Transactions on
Automatic Control 49.11 (Nov. 2004), pp. 1886–1904. DOI: 10.1109/
tac.2004.837595. [cit. on p. 59. 61].

[YL05] Tae-Sic Yoo and S. Lafortune. “Decentralized supervisory control with
conditional decisions: supervisor realization”. In: IEEE Transactions on
Automatic Control 50.8 (Aug. 2005), pp. 1205–1211. DOI: 10.1109/
tac.2005.852556. [cit. on p. 59. 75].

77

https://arxiv.org/abs/2204.10792
https://doi.org/10.1007/s10626-022-00363-7
https://doi.org/10.1109/9.173140
https://doi.org/10.1109/tac.2007.915171
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2005.852556
https://doi.org/10.1109/tac.2005.852556

5 Unification of the Conditional
Architecture and Inference-Based
Architectures

Kumar and Takai [KT07] demonstrated formally that the conditional architecture
sits within the hierarchy of inference-based architectures. However, the conditional
architecture is formally specified in a way that is different from how the other infer-
ence-based architectures are specified. This difference is manifested in two different
forms. Locally, the conditional architecture allows all supervisors to simultaneously
abstain; whereas other architectures in the hierarchy do not permit simultaneous
abstention. Globally, solving a DSCOP with the conditional architecture involves
choosing a fusion rule from f enable and fdisable, i.e., a default decision, for each
event; whereas the other inference-based architectures eliminate the necessity for a
default decision. Using the reformulation in Section 4B, we are able to explain how
the need for a default decision is eliminated, namely by separating abstain into a
true abstaining decision and a higher-level inferencing decision. Then in the case
where all supervisors abstain, it will turn out that some of the abstain are actually
a higher-level inferencing decision.

The epistemic formalism is illuminating and suggestive. As discussed in the proof,
the abstain decision plays two roles. Hence we proceed to reformulate the con-
ditional architecture by splitting the roles of the abstain decision. Consider the
set of control decisions CD = { enable0, disable0, enable1, disable1, ∗2, ⊥} (we
intentionally use tokens distinguished from what we have been using), where ∗2 has
to be chosen from enable2 and disable2 for each σ ∈ Σc, the fusion rule fσ for σ is
defined to take cd as the fused decision if cdi is the local decision with the smallest i.
Note that this implies that 1) if, say, enablei is the local decision with the smallest i,
then there must be no supervisor issuing disablei; and 2) at least one supervisor
must issue a decision that is not ⊥, i.e., not all supervisors abstain.

We intentionally used different symbols for the control decisions in the reformu-
lation so it is clear whether a symbol refers to a decision in the original or the
re-formulation.

It can be seen intuitively that the original and the reformulation are equivalent.

First, the original can be embedded in (translated to) the reformulation by the

79

5 Unification of the Conditional Architecture and Inference-Based Architectures

following mapping:

on 7→ enable0

off 7→ disable0

weak on 7→ enable1

weak off 7→ disable1

abstain 7→ ∗2

and vice versa

enable0 7→ on
disable0 7→ off
enable1 7→ weak on
disable1 7→ weak off

∗2 7→ abstain
⊥ 7→ abstain

In particular, the second mapping shows the two roles that abstain plays, where
⊥ is the true abstaining decision. With this reformulation, it is not possible for all
supervisors to simultaneously issue the ⊥ decision, i.e., they can’t all truly be issuing
a “don’t know” decision.

For a more formal justification behind the embedding argument and a general
discussion on its application in demonstrating relative strength of two architectures
(especially equivalence), we defer to Chapter 8.

It is now clear how the conditional architecture belongs to the hierarchy of inference-
based architectures. Consider arranging the control decisions in any inference-based
architecture into two chains:

enable0 ≤ disable1 ≤ enable2 ≤ . . . ≤ aN

and

disable0 ≤ enable1 ≤ disable2 ≤ . . . ≤ bM .

Then the fusion rule of an inference-based architecture can be considered as an
arbiter that resolves conflicts in local decisions, and the problem solvability condition
for that architecture is essentially requiring that the conflicts are always resolvable.
Since it is the supervisors that infer, and the architecture is arbitrating, we call
an inference-based architecture an arbitration architecture, and call its respective
problem solvability co-inferability. Then an arbitration architecture can be identified
by a pair of numbers (N,M) that describe the chains above. Hence the conditional
architecture, based on the choice of xi for an event σ ∈ Σc, is either a (1, 2)-

80

arbitration architecture, or a (2, 1)-arbitration architecture for σ. Hence we call the
conditional architecture “[(1, 2)/(2, 1)]-arbitration architecture”.

In the original numbering of the arbitration architectures, Kumar and Takai [KT07]
would assign an (N,M)-architecture the number max{N, M } − 1, hence in their
numbering many architectures of different capabilities receive the same number.

Our new numbering scheme allows more precise placement of many known archi-
tectures within the hierarchy as depicted in Fig. 5.1.

It should be noted that the architectures (0, 1)/(1, 0) and (1, 2)/(2, 1) are not each a
single architecture but a compound architecture. For example, our analysis above
shows that the conditional architecture (now identified as (1, 2)/(2, 1)) selects one
of the two (1, 2) and (2, 1) architecture for each controllable event. If one excludes
the compound architectures from Fig. 5.1, then Fig. 5.1 would depict part of the
lattice of the hierarchy of arbitration architectures: given two architectures (N1,M1)
and (N2,M2), their join and meet are given by component-wise max and min,
respectively. Note that the lattice of co-inferability conditions, ordered by logical
implication, is opposite to the lattice of arbitration architectures.

81

5 Unification of the Conditional Architecture and Inference-Based Architectures

(2, 2)

(1, 2)/(2, 1)

conditional
[YL04]

(2, 1)
(1, 2)

[RR07]

(1, 1)

(0, 1)/(1, 0)

general

[YL02]

(1, 0)

C&P
[RW92]

(0, 1)

D&A
[PKK97]

(0, 0)

C&P∧D&A
[RR22c]

Figure 5.1: Some commonly known architectures are placed within the arbitration
hierarchy, ordered by the “more general than” relation. An informal
name is given alongside the numeric identification, if such a name has
been established for either the architecture itself or for the respective
co-inferability condition (e.g., the co-inferability of the (1, 0)-arbitration
architecture is called C&P co-observability). Some architectures are
given with no reference, if they have not been studied in particular, but
are placed in the graph for completeness.

82

References

References

[KT07] R. Kumar and S. Takai. “Inference-Based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: IEEE Transactions on Automatic Control 52.10 (Oct. 2007),
pp. 1783–1794. DOI: 10.1109/TAC.2007.906158. [cit. on p. 79. 81].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion and supervi-
sor synthesis in decentralized discrete-event systems”. In: Proceedings
of the American Control Conference. IEEE, 1997. DOI: 10.1109/ACC.
1997.608978. [cit. on p. 82].

[RR07] S. L. Ricker and K. Rudie. “Knowledge Is a Terrible Thing to Waste:
Using Inference in Discrete-Event Control Problems”. In: IEEE Trans-
actions on Automatic Control 52.3 (Mar. 2007), pp. 428–441. DOI:
10.1109/TAC.2007.892371. [cit. on p. 82].

[RR22c] K. Ritsuka and Karen Rudie. “Epistemic interpretations of decentralized
discrete-event system problems”. In: Discrete Event Dynamic Systems
32.3 (June 2022), pp. 359–398. DOI: 10.1007/s10626-022-00363-7.
[cit. on p. 82].

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally: decentralized
supervisory control”. In: IEEE Transactions on Automatic Control 37.11
(1992), pp. 1692–1708. DOI: 10.1109/9.173140. [cit. on p. 82].

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture for Decen-
tralized Supervisory Control of Discrete-Event Systems”. In: Discrete
Event Dynamic Systems 12.3 (2002), pp. 335–377. DOI: 10.1023/a:
1015625600613. [cit. on p. 82].

[YL04] T.-S. Yoo and S. Lafortune. “Decentralized Supervisory Control With
Conditional Decisions: Supervisor Existence”. In: IEEE Transactions on
Automatic Control 49.11 (Nov. 2004), pp. 1886–1904. DOI: 10.1109/
tac.2004.837595. [cit. on p. 82].

83

https://doi.org/10.1109/TAC.2007.906158
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/TAC.2007.892371
https://doi.org/10.1007/s10626-022-00363-7
https://doi.org/10.1109/9.173140
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2004.837595

6 A Visualization of Inference-Based
Supervisory Control in Discrete-
Event Systems

A visualization to aid in the construction of inference-based decentralized supervi-
sors is presented. In the inference-based architecture, supervisors have different
levels of ambiguity, which reflects to what degree a supervisor is confident in its
control decision and to what degree a supervisor infers a control decision based on
the supervisor’s knowledge of another supervisor’s control decision.

6A Introduction

The problem of decentralized supervisory control of discrete-event systems, consid-
ers restricting a plant’s behaviour with a group of local supervisors, and requires
each local supervisor to judge, according to its partial observation of the plant,
suitable control decisions in order to achieve desired fused decisions.

While it has not been stated explicitly, since the earliest study of decentralized
supervisory control, the control architectures have been designed so that supervisors
issue control decisions according to their varying degree of “confidence”. The
earliest architecture considered by Rudie and Wonham [RW92] allows supervisors
to disable events when they are in total confidence, entailing that the problem is
solvable whenever at all states at which an event must be disabled, at least one
supervisor is totally confident that the event must be disabled. Dually, Prosser, Kam,
and Kwatny [PKK97] allow supervisors to enable events when they are in total
confidence.

It has been known that the architectures of Rudie and Wonham [RW92] and Prosser,
Kam, and Kwatny [PKK97] are not compatible, so that there are problems solvable
in one architecture but not solvable in the other. To bring both architectures into
unity, Yoo and Lafortune [YL02] considered an architecture in which supervisors
are allowed to both disable and enable events when they are in total confidence.

Kumar and Takai [KT07] then called the lack of confidence ambiguity. They studied
and then concluded that “unconfident” supervisors can still contribute in shaping
the fused decisions, even when supervisors are ambiguous in some special ways.

85

6 A Visualization of Inference-Based Supervisory Control in Discrete-Event Systems

Such special ambiguities, as Kumar and Takai [KT07] have put it, come in levels
of gradations, so that the control decision of a supervisor who is in an ambiguity
of a lower gradation should be preferred over that of one who is in a higher level
of ambiguity. This extension is formulated in the N -inferencing architecture by
Kumar and Takai [KT07], where N is the highest level of ambiguity one would like
to permit.

Kumar and Takai [KT07] gave a verifiable necessary and sufficient condition for a
decentralized control problem to be solvable under the N -inferencing architecture,
which they called N -inference-observable. Later Takai and Kumar [TK08] provide an
algorithm to synthesize the supervisors whenever it is possible.

We see that the verification and supervision synthesis processes by Takai and Kumar
are described with vigorous formalism, but may not be accessible to DES researchers
not already expert in the inferencing architecture. Moreover, the solutions do not
offer much insight into understanding why they work. Therefore, this chapter
provides a visualization of inference-based supervisory control. The visualization is
done for an algorithm that performs both verification and supervision synthesis con-
currently, and is slightly modified to guarantee convergence. Potential implications
of this modification are discussed as well.

6B Inference-based Architecture

The inference-based architecture, as expressed in Defn. 2A1.1, consists of the set
of control decisions CD = { enablei,disablei }i∈N ∪ { abstain }, where the control
decisions enablei (resp., disablei) is used by a supervisor with the intention to
enable (resp., disable) an event, and the number i indicates the level of ambiguity
of a supervisor. The special decision abstain is used to denote a supervisor that
refrains from voting. Alternatively, we use the notation (enable, i) to denote enablei.
We do similarly for disablei.

As we would like to prioritize more highly the decisions of the supervisors who are
more certain, and the higher the ambiguity level of a supervisor, the less certain the
supervisor is. We reflect this in the partial ordering < over CD defined as follows:

• For cd1, cd2 ∈ { enable,disable } and i, j ∈ N, whenever i < j, let

(cd1, i) < (cd2, j)

• For all (cd, i) ∈ CD, let
(cd, i) < abstain

86

6B Inference-based Architecture

That is, a decision with smaller index trumps decisions with larger indices. The
relation is illustrated in Fig. 6.1.

With the ordering < over CD, we can loosely express the fusion rule f compactly
as

fσ({ cdi }i∈Nσ) := min{ cdi }i∈Nσ

Even though the expression is somewhat lax, the fusion rule is indeed well-defined,
as we will demonstrate that the minimal element in { cdi }i∈N is unique, at any legal
state for any physically possible event. That is, it is impossible for both enablei and
disablei to be minimal. Consequently, the notion of validity1 introduced by Kumar
and Takai [KT07], which requires that fσ({ cdi }i∈Nσ) be a total function, becomes
redundant.

Kumar and Takai [KT07] provide a necessary and sufficient condition for DSCOP
to be solvable when the level of ambiguity is at most an arbitrary but fixed N . In
particular, there was no known way to determine that there does not exist a number
N , such that the level of ambiguity does not exceed N . This condition is called N -
inference-observability.

When the legal language is N -inference-observable, the supervisors can be synthe-
sized following Takai and Kumar [TK08].

1In their earlier work, Kumar and Takai [KT05] had a different but equivalent notion called
admissibility. Also note that this is not the notion of validity we recalled in Defn. 2A1.1.

enable0 disable0

enable1 disable1

abstain

... ...

<

Figure 6.1: The partially ordered set (CD, <).

87

6 A Visualization of Inference-Based Supervisory Control in Discrete-Event Systems

6C Visualization

In this section, we illustrate our visualization algorithm step-by-step on the following
example: let G be the plant illustrated by Fig. 6.2, where double circled states are
those in QE. Let Σ1,o = {α, α′ }, Σ2,o = { β, β′ } and Σ1,c = Σ2,c = { γ }. This
example is derived from Kumar and Takai [KT07, Fig. 1]: we removed half of the
plant for compactness

To begin the algorithm, construct the automaton G′ = (Σ, Q′, δ′, q′0) := G× P1(G)×
. . . Pn(G). For our visualization technique, we execute the standard subset construc-
tion procedure [HMU06] to represent projections, which results in a computation
taking space exponential to the number of states of G and to the number of agents.
This automaton has a few nice properties. First, although G′ is not necessarily
isomorphic to G, we have L(G′) = L(G), hence one can always assume, without
loss of generality, that the plant is actually implemented as G′ instead of G. Then,
for all states q′ = (qG, q

obs
1 , . . . , qobsn) ∈ Q′ (assuming accessibility of G′), it is always

the case that q ∈ qobsi for i ∈ N ; conversely, for all q ∈ qobsi there always exists a
state q′ such that q′ = (qG, . . . , q

obs
i , . . .). That is, the states Q′ record both the plant’s

3'

35

5' 4'

4

2'1'

1 2

Figure 6.2: Plant G

4
2, 2', 4, 4'

4, 4'

2'
2, 2', 4, 4'
1, 1', 2, 2'

4'
2, 2', 4, 4'

4, 4'

1
1, 1', 3, 3'
1, 1', 2, 2'

1'
1, 1', 3, 3'
1, 1', 2, 2'

2
2, 2', 4, 4'
2, 2', 1, 1'

3'
1, 1', 3, 3'
3, 3', 5, 5'

3
1, 1', 3, 3'
3, 3', 5, 5'

5
5, 5'

3, 3', 5, 5'

5'
5, 5'

3, 3', 5, 5'

Figure 6.3: Automaton G′. A state (qG, q
obs
1 , qobs2) is represented in the figure with q,

qobs1 , qobs2 stacked vertically in that order. States are also labelled by their
equivalence classes ker ∼1= {AaAaAa,AbAbAb,AcAcAc } (resp., ker ∼2= {BaBaBa,BbBbBb,BcBcBc })
in the upper left (resp., upper right) corner.

88

6C Visualization

actual state, and each supervisor’s estimation of the plant’s state.

Next, form the (partial) equivalence relations {∼i }i∈N overQ′ ⊆ Q×Qobs
1 ×· · ·×Qobs

n ,
so that two states q′ = (qG, q

obs
1 , . . . , qobsn) and p′ = (pG, p

obs
1 , . . . , pobsn) are related by

∼i iff qobsi = pobsi . I.e., q′ ∼i p
′ whenever q′ and p′ are indistinguishable to supervisor

i. The equivalence class with respect to ∼i containing a state p is denoted as [p]i,
whenever such class exists. We extend the operators [·]i additively, so that given a
set P of states, [P]i =

⋃
p∈P [p]i.

The automaton G′ and the equivalence relations ∼i are illustrated in Fig. 6.3.

Now we proceed to the actual visualization. For ease of presentation and due to
space limitation, we interleave our running example with the formal definition.

Then for each controllable event σ we construct a tabular representation of the
equivalence relations ∼i. We dedicate the columns for states in Q′, and in each
row i indicate in the corresponding columns the equivalence classes the states are
in. The table is thus a Venn diagram, displaying overlappings between equivalence
classes as vertical adjacencies.

With Fig. 6.3 as the example, the table for event γ is shown in Fig. 6.4. In the tabular
diagram, we use different colours to distinguish different equivalence classes. For
illustration purposes, we append, two additional rows as follows. The third row
indicates the corresponding states for the columns. Since for this particular example,
the automaton G′ is isomorphic to G, we thus label the columns with states in QG

instead of Q′ for compactness. In the fourth row we indicate whether we desire c
to be enable’d (as it leads to a legal state), which we indicate with EEE; or disable’d
(as it leads to an illegal state), indicated with DDD. States at which the event c is
not physically possible are indicated by the absence of tokens in the bottom row.
For example, states 3, 3′, 5, 5′ are indistinguishable by supervisor 2, being in the
equivalence class BaBaBa, and we desire that the event c be enable’d (resp., disable’d)
at state 5 (resp., 3), whereas since c is physically impossible at states 3′ and 5′, any
decision is permitted.

AaAaAa AbAbAb AcAcAc

BaBaBa BbBbBb BcBcBc

555

EEE

5′5′5′ 333

DDD

3′3′3′ 111

EEE

1′1′1′ 222

DDD

2′2′2′ 444

EEE

4′4′4′

Figure 6.4: Tabular representation of G′ in Fig. 6.3

Note that in this example, we enjoy the nice consequence of G′ being isomorphic

89

6 A Visualization of Inference-Based Supervisory Control in Discrete-Event Systems

to G, hence we can label the columns by qG ∈ QG, instead of (qG, q
obs
1 , qobs2) ∈

QG ×Qobs
1 ×Qobs

2 .

For aesthetic purposes, we intentionally arranged the table so that columns of the
same equivalence class are adjacent. Note that whether such an arrangement is
possible has no implication for problem solvability.

We thus see that the benefit of this tabular representation is to compact information
we need to construct the control policy while discard irrelevant information such as
transitions.

For states at which the event is physically impossible, since any decision is permitted,
we can put off the consideration of these states until the end of the algorithm, and
consider only states at which the event is physically possible, thus decisions for
the event are pending at those states. Similarly, since illegal states would not be
reachable should correct control has been enforced along the way, we only have to
consider decisions at legal states. Therefore, as step 0 of the algorithm, we compute
D0(σ), the set of states where the desired fused decision should be disable and
E0(σ), the set of states where the desired fused decision should be enable:

D0(σ) := { q ∈ Q′ | δ(qG, σ)! ∧ δ(qG, σ) ̸∈ QE }
E0(σ) := { q ∈ Q′ | δ(qG, σ)! ∧ δ(qG, σ) ∈ QE }

Notice that D0(σ) and E0(σ) are disjoint.

Let U0(σ) := D0(σ)∪E0(σ) be the collection of states at which local control decisions
are yet undetermined. Then, we restrict the partial equivalence relations ∼i to U0(σ).
We then obtain a more compact table. To illustrate this “preprocessing” step, Fig. 6.4
becomes Fig. 6.5 with the irrelevant states removed.

AaAaAa AbAbAb AcAcAc

BaBaBa BbBbBb BcBcBc

555

EEE

333

DDD

111

EEE

222

DDD

444

EEE

Figure 6.5: Fig. 6.4 after the preprocessing to remove irrelevant states, i.e., step 0
of the algorithm on the example.

Step 0 corresponds to the computation of the following two languages in [KT07;

90

6C Visualization

TK08]2:
D′

0(σ) := { s ∈ L(E) | sσ ∈ L(G)− L(E) }
E ′

0(σ) := { s ∈ L(E) | sσ ∈ L(E) }
(6.1)

Then we iteratively remove states in the table according to the following rule, until
the rule no longer applies. At step k + 1, consider all equivalence classes of all
supervisors. If all states of a class are marked identically, say EEE, then remove the
columns corresponding to these states from the table, and let the corresponding
supervisor of the class issue the decision enablek for all states in that class, including
those removed in the previous steps. Do the same thing for the mark DDD, with the
decision disablek instead.

Formally, compute the following set:

Dk+1(σ) := Dk(σ) ∩

(⋂
i∈Nσ

[Ek(σ)]i

)
(6.2.1)

= Dk(σ)−

[
Dk(σ)−

(⋂
i∈Nσ

[Ek(σ)]i

)]

= Dk(σ)−

[⋃
i∈Nσ

(Dk(σ)− [Ek(σ)]i)

]

= Dk(σ)−

[⋃
i∈Nσ

(Uk(σ)− [Ek(σ)]i)

]

where the set Uk(σ)− [Ek(σ)]i contains all pending states which are not confused
with any state in Ek(σ) as perceived by some supervisor i. At these states, supervisor
i unambiguously knows that σ has to be disabled. Therefore, a decision can be
chosen, and we remove these states from the pending set. Similarly, compute the
set

Ek+1(σ) := Ek(σ) ∩

(⋂
i∈Nσ

[Dk(σ)]i

)
(6.2.2)

= Ek(σ)−

[⋃
i∈Nσ

(Uk(σ)− [Dk(σ)]i)

]

Notice that Dk+1(σ) and Ek+1(σ) are disjoint.

Then, let supervisor i issue the decision disablek at all states in the set Uk(σ) −
[Ek(σ)]i, and enablek at all states in the set Uk(σ)− [Dk(σ)]i.

2The notation by Kumar and Takai does not contain prime symbols. We use prime symbols when
referring to their languages to distinguish them from our sets of states.

91

6 A Visualization of Inference-Based Supervisory Control in Discrete-Event Systems

Finally, we restrict the partial equivalence relations ∼i to Uk+1(σ) = Dk+1(σ) ∪
Ek+1(σ).

One important observation of this process is that for a state removed at step i, the
minimal control decision issued at that state is unique, and can be denoted (cd, i).
Furthermore, cd is exactly the desired fused decision.

The expressions (6.2.1) and (6.2.2) of the sets Dk+1(σ) and Ek+1(σ) correspond to
the following languages in Kumar and Takai [KT07] and Takai and Kumar [TK08]:

D′
k+1(σ) := D′

k(σ) ∩

(⋂
i∈Nσ

P−1
i Pi(E

′
k(σ))

)

E ′
k+1(σ) := E ′

k(σ) ∩

(⋂
i∈Nσ

P−1
i Pi(D

′
k(σ))

) (6.3)

However, the correspondence is not exact: the computation of Dk(σ) and Ek(σ)
eventually converge while the computation of D′

k(σ) and E ′
k(σ) does not always

converge. To not interrupt the current discussion, we continue illustrating the
algorithm with the example and come back to the issue of convergence at the end
of this section.

To illustrate the algorithm with the example, consider the equivalence class AaAaAa in
step 0, Fig. 6.5. Since all states in AaAaAa (in this case, just a single state 5) are marked
EEE, let the supervisor 1, from whose equivalence relation ∼1 the equivalence class
AaAaAa was created, issue the control decision enable0 for the event c at all states in AaAaAa

(viz. just state 5). Then we remove the column for state 5. We use a similar strategy
to remove the column for state 4 with supervisor 2 and equivalence class BcBcBc being
the analogues of supervisor 1 and AaAaAa in the foregoing argument.

This brings us to step 1, as illustrated in Fig. 6.6. Now consider state 3, which has
not been removed in step 0, since it was in the same equivalence class BaBaBa as state
5, and they are marked differently. However with state 5 removed, the state 3 is
no longer ambiguous to supervisor 2, since all states in the class AaAaAa are marked
identically as 3.

AbAbAb AcAcAc

BaBaBa BbBbBb

333

DDD

111

EEE

222

DDD

Figure 6.6: Step 1 of the algorithm on the example.

92

6C Visualization

AaAaAa AbAbAb AcAcAc

BaBaBa BbBbBb BcBcBc

555

EEE

5′5′5′ 333

DDD

3′3′3′ 111

EEE

1′1′1′ 222

DDD

2′2′2′ 444

EEE

4′4′4′
preprocess−−−−−→

AaAaAa AbAbAb AcAcAc

BaBaBa BbBbBb BcBcBc

555

EEE

333

DDD

111

EEE

222

DDD

444

EEE

step1−−−→

AbAbAb AcAcAc

BaBaBa BbBbBb

333

DDD

111

EEE

222

DDD

step2−−−→

AbAbAb

BbBbBb

111

EEE

step3−−−→

 blank

Figure 6.7: Complete trace of the algorithm running on the example.

From supervisor 2’s point of view, it “knows” that supervisor 1 has the intention
to enforce the desired control requirement at state 5, with the control decision
enable0, hence supervisor 2 no longer has to worry about state 5, and can focus on
the remaining states in BaBaBa. Since the states remaining in BaBaBa are all marked DDD, hence
supervisor 2 now can unambiguously realize that a disable decision is in order. But
supervisor 2 could not have resolved the prior ambiguity if supervisor 2 did not
know that the correct control decision would be enforced at state 5 by supervisor 1
with the control decision enable0.

Hence in order not to step on the toes of supervisor 1, supervisor 2 should issue a
disable command weaker than enable0. While any number larger than 0 could be a
candidate, supervisor 2 sees that just as it relied on supervisor 1’s enable0 decision,
which is determined at step 0, its decision at the current step, step 1, might also be
relied on in later steps. Hence, supervisor 2 should put its decisions under priority 1,
and therefore would issue the control decision disable1 at all states in BaBaBa, including
the state 5 removed in the previous step.

With this example, we conclude the following principle determining the appropriate
priority of a control decision: to save us the problem of having to keep tracking the
priorities of decisions determined at every step i, we can simply issue decisions with
priority i, as the example has demonstrated that doing so is adequate.

Coming back to the example, with taking the global point of view, since state 5 is
removed in step 0, a control decision with lower level of ambiguity is issued by
supervisor 1 (namely, enable0), hence supervisor 2’s decision disable1 is overridden
and not effective. That decision of supervisor 2 is guaranteed to be effective,
however, at state 3, since no lower-level decision will be issued at that state, as
otherwise state 3 would have already been removed prior to step 1.

Continuing the algorithm on the example until termination, we obtain Fig. 6.7, and
all states have been removed, meaning that at least a supervisor can make a non-

93

6 A Visualization of Inference-Based Supervisory Control in Discrete-Event Systems

abstain decision at every state. For each (supervisor, state) pair to which we have
not explicitly assigned a decision, assign abstain, so that the fused decisions remain
as intended.

Neither our example (Fig. 6.2) nor the original example by Kumar and Takai [KT07,
Fig. 1] illustrates a situation in which a supervisor needs to issue an abstain
decision. As a supplement, we add, for the sake of conciseness, not a complete
example with the plant and observable/controllable events specified, but only a
snapshot of the algorithm, to illustrate when an abstain decision would be used.

Consider Fig. 6.8. Since both states 1 and 2 are eligible for removal at this point,
after executing one step of the algorithm, the equivalence class AaAaAa becomes empty.
What makes the situation special is that the last removal making a class empty is not
due to the unambiguity of the corresponding supervisor of that class. In the previous
example (Fig. 6.4), the set BaBaBa becomes empty when state 3 is removed, and the
removal of that state is due to the fact that all remaining states in BaBaBa (namely, state
3), are marked consistently (namely, by DDD). In contrast, the last removal resulting
in the set AaAaAa becoming empty in Fig. 6.8 removes states 1 and 2, however, they are
marked differently to supervisor 1.

AaAaAa

BaBaBa BbBbBb

111

DDD

222

EEE

Figure 6.8: A situation where the control decision abstain is issued.

Since both states 1 and 2 in Fig. 6.8 are removed due to supervisor 2’s confidence,
this step of the algorithm assigns non-abstain decisions to supervisor 2 at those
two states. On the other hand, since the set AaAaAa is also effectively removed, we
have to assign some decision at states in the set AaAaAa (including not only states 1
and 2 but also states removed from AaAaAa in the previous steps). By our previous
argument, assigning to supervisor 1 either decision enable or disable with an index
smaller than the number of the current step is an adequate choice, since either way
supervisor 1’s decision will have no effect on shaping the fused decisions. Hence
strictly speaking we do not need a distinct abstain decision. Still, it is beneficial to
use the abstain decision to distinguish such special cases from the cases where the
regular enable and disable decisions are needed.

Therefore, we see, whenever the algorithm terminates, either all states have been
removed, in which case the problem is solvable, and in fact a solution is produced;
or some states are left but all remain ambiguous, in which case our algorithm

94

6D Conclusions

produces no solution for the given implementation of G.

At this point, we can informally summarize, that if the algorithm terminates with all
states removed, then at every state, a unique minimal non-abstain decision is issued,
and hence the synthesized supervision must— by construction— be admissible.

Now we turn back to and elaborate on the difference between our sets of states
Dk(σ), Ek(σ) and the languages D′

k(σ), E
′
k(σ) [KT07; TK08]. Since both D0(σ)

and E0(σ) are finite, our computation eventually converges. On the other hand,
with D′

0(σ) and E ′
0(σ) potentially being infinite, the computation does not always

converge. This difference is due to the fact that our algorithm does not exploit the
ability to unfold cycles in the plant automaton, whereas when the algorithm of
Kumar and Takai does [KT07; TK08], its computation may not converge in a finite
number of steps. Recall that given a specific plant specification G, our algorithm
constructs the automaton G′ = G × P1(G) × · · · × Pn(G) and the computation of
Dk(σ) and Ek(σ) can be thought as removing all strings leading into an eligible
state of G′ at once, by gradually restricting to subsets of the states of G′, whereas
the computation of D′

k(σ) and E ′
k(σ) can remove fewer strings at once, and thus

can be regarded as unfolding cycles in the plant during the computation.

Indeed, our algorithm could be augmented with the capability of unfolding cycles,
by iteratively computing the automata Gk+1 = Gk × P1(G

k)× · · · × Pn(G
k), where

G0 = G, until convergence (which does not always happen), and then proceed
to the described computations of Dk(σ) and Ek(σ). We then face two questions.
Does unfolding cycles in this way allow our algorithm to solve more problems?
Furthermore, is it ever necessary to unfold cycles? The answer to these questions is
unknown. Having the answer “No” to the second question would be ideal, and a
sufficient condition would be if our algorithm is specification-independent, i.e., given
two behaviourally equivalent plant specifications G and H (so that L(G) = L(H)),
if our algorithm terminates with a solution for G, it also terminates with a solution
for H. Moreover, if our algorithm is indeed specification-independent, then it is
equivalent to the original algorithm of Kumar and Takai [KT07; TK08] (in the sense
that when one gives a solution, the other also does), which means we can avoid
diverging computations entirely. However, whether our algorithm is specification-
independent is unknown.

6D Conclusions

This chapter presents a visualization of the synthesis of supervisors in the infer-
ence-based decentralized supervisory architecture [KT07; TK08]. The visualization
provides an alternative interpretation to the number N in the “N -inferencing archi-

95

6 A Visualization of Inference-Based Supervisory Control in Discrete-Event Systems

tecture”. Instead of being the highest level of ambiguity one would like to permit
when solving a decentralized supervisory problem, the number N denotes the high-
est level of ambiguity inherently present in the system, so that if one desires to
solve the problem at all, one must permit at least N levels of ambiguities during the
inference.

The visualization provides more accessible intuition of the nature of “inferencing”.
We are now able to discuss the supervision informally with phrases such as “supervi-
sor 1 knows that supervisor 2 knows . . . ”. This notion of reasoning about knowledge
can be formalized in the same way as done in our earlier work [RR23].

References

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computation. 3rd ed. USA:
Addison-Wesley Longman Publishing Co., Inc., 2006. [cit. on p. 88].

[KT05] R. Kumar and S. Takai. “Inference-based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, 2005. DOI: 10.1109/CDC.2005.1582701. [cit. on p. 87].

[KT07] R. Kumar and S. Takai. “Inference-Based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: IEEE Transactions on Automatic Control 52.10 (Oct. 2007),
pp. 1783–1794. DOI: 10.1109/TAC.2007.906158. [cit. on p. 85. 86. 87.
88. 90. 91. 92. 94. 95].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion and supervi-
sor synthesis in decentralized discrete-event systems”. In: Proceedings
of the American Control Conference. IEEE, 1997. DOI: 10.1109/ACC.
1997.608978. [cit. on p. 85].

[RR23] K. Ritsuka and K. Rudie. Do What You Know: Coupling Knowledge with
Action in Discrete-Event Systems. Submitted for publication. 2023. [cit.
on p.].

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally: decentralized
supervisory control”. In: IEEE Transactions on Automatic Control 37.11
(1992), pp. 1692–1708. DOI: 10.1109/9.173140. [cit. on p. 85].

[TK08] Shigemasa Takai and Ratnesh Kumar. “Synthesis of Inference-Based
Decentralized Control for Discrete Event Systems”. In: IEEE Trans-
actions on Automatic Control 53.2 (Mar. 2008), pp. 522–534. DOI:
10.1109/tac.2007.915171. [cit. on p. 86. 87. 91. 92. 95].

96

https://doi.org/10.1109/CDC.2005.1582701
https://doi.org/10.1109/TAC.2007.906158
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/9.173140
https://doi.org/10.1109/tac.2007.915171

References

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture for Decen-
tralized Supervisory Control of Discrete-Event Systems”. In: Discrete
Event Dynamic Systems 12.3 (2002), pp. 335–377. DOI: 10.1023/a:
1015625600613. [cit. on p. 85].

97

https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1023/a:1015625600613

7 Equivalence of Decentralized
Observation, Diagnosis, and Control
Problems in Discrete-event Systems

This chapter demonstrates an equivalence between observation problems, con-
trol problems (with partial observation), and diagnosis problems of decentralized
discrete-event systems, namely, the three classes of problems are Turing equivalent,
as one class Turing reduces to another.

The equivalence allows decomposition of a control problem into a collection of sim-
pler control sub-problems, which are each equivalent to an observation problem; and
similarly allows converting a diagnosis problem to a formally simpler observation
problem. Since observation problems in their most general formulation have been
shown to be undecidable in previous work, the equivalence produced here demon-
strates that control problems are also undecidable; whereas the undecidability of
diagnosis problems is a known result.

7A Introduction

Most research in discrete-event systems (DES) falls into two categories: those
concerning closed-loop systems such as control problems, and those concerning
open-loop systems, such as observation problems and diagnosis problems.

plant

control
decision

(decentralized)
controller

plant

(decentralized)
observer

verdict

Figure 7.1: Left: open-loop systems. Right: closed-loop systems. Adapted from
[Tri].

99

7 Equivalence of Decentralized Observation, Diagnosis, and Control Problems in
Discrete-event Systems

For a discrete-event system plant, a closed-loop system is formed by imposing
supervisory control over the plant. A control problem asks for a supervisory control
policy so that the closed-loop system meets some prescribed properties. The scheme
of control problems is illustrated in Fig. 7.1.

Studies of control problems began with the seminal work of Ramadge and Won-
ham [RW87]. Partial observations [LW88] and decentralized supervision [Cie+88;
RW92] were introduced in subsequent studies. Cieslak et al. [Cie+88] and Rudie
and Wonham [RW92] initially introduced decentralized supervision under a con-
straint of available local control decisions and how overall control decisions are
fused from the local ones. That constraint has been gradually relaxed [PKK97; YL02;
YL04; KT05; CK11] over the past few decades.

On the other hand, open-loop systems take different forms. A concrete example is
diagnosis problems [Sam+95; DLT00; ST02; QK06; WYL07] that seek distinguishing
strings contain “faulty” events within a bounded delay of the occurrence of the faulty
events. On the other hand, a more abstract example is observation problems that
seek distinguishing strings from a prescribed collection. The earliest formalization
of observation problems, as known to the author, is by Tripakis [Tri04]. The scheme
of open-loop systems is illustrated in Fig. 7.1.

The three classes of problems, control, diagnosis, and observation, seem to be
unrelated. Control problems concern closed-loop behaviour, whereas diagnosis
problems allow a delay for the correct verdicts to be made, but observation problems
do not. Therefore, the three classes of problems are usually studied separately.

However, results for one of the classes of problems have often been adopted to one
of the other classes of problems. This suggests that there is a mutual connection
between the three classes of problems. This document is intended to establish such
connection as an equivalence between the three classes of problems.

7B Observation Problem

An observation problem seeks to distinguish strings in a set K, where K ⊆ L,
from strings in L − K. Formally, an observation problem is specified as follows.
Given alphabet Σ and subalphabets Σi,o ⊆ Σ called the observed alphabets, natural
projections Pi : Σ

∗ → Σi,o, for agents i ∈ N = { 1, . . . , n }, and given languages
K ⊆ L ⊆ Σ∗, the observation problem is to construct observers fi and a fusion rule

100

7C Diagnosis Problem

f , such that
∀ s ∈ L.

s ∈ K ⇒ f(f1P1(s), . . . , fnPn(s)) = 1

∧ s ∈ L−K ⇒ f(f1P1(s), . . . , fnPn(s)) = 0

(7.1)

An instance of the observation problem, Obs, is denoted by O(L,K, {Σi,o }i∈N) or
more simply, O(L,K,Σi,o).

If the fusion rule f is given as part of the problem, then the instance is denoted
by O(f, L,K,Σi,o). Such problems are instance of the f -observation problem, or
f -Obs.

Solvability of observation problems is known to be undecidable [Tri04].

We will show that diagnosis problems and control problems are both equivalent to
observation problems.

7C Diagnosis Problem

The diagnosis problems were first studied in the centralized case by Sampath et
al. [Sam+95], and extended to the decentralized cases [DLT00; ST02; QK06;
WYL07].

A diagnosis problem seeks to identify strings containing special events, known as
“faulty events”, within a bounded delay of time. Formally, a diagnosis problem
is specified as follows. Given alphabet Σ and subalphabets Σi,o ⊆ Σ called the
observed alphabets, natural projections Pi : Σ

∗ → Σi,o, for agents i ∈ N = { 1,
. . . , n }. For a fault alphabet Σf ⊆ Σuo = Σ −

⋃
i Σio, a language L, say a string

s ∈ L is positive (faulty) if s contains at least one symbol from Σf , and otherwise is
negative. We may assume that there is a single fault event σf as this assumption is
inconsequential to the hardness of the problem.

For a faulty string s, if s = πσfτ for some strings π and τ , where |τ | ≥ m, we say
that s is faulty for at least m steps. In other words, a string st is faulty for at least m
steps if s is faulty and |t| ≥ m.

Then the diagnosis problem is, given an upper bound of delay as an integer m,

101

7 Equivalence of Decentralized Observation, Diagnosis, and Control Problems in
Discrete-event Systems

construct observers fi and a fusion rule f , such that

∀ s ∈ L.

s is positive for at least m steps ⇒ f(f1P1(s), . . . , fnPn(s)) = 1

∧ s is negative ⇒ f(f1P1(s), . . . , fnPn(s)) = 0

(7.2)

That is, faulty strings are diagnosed after at most m steps of the fault.

The problem statement above is a simplification: A subtlety in the problem statement
is that there may exist a faulty string s ∈ L that is positive for less than m steps but
has no extension in L which is positive for at least m steps. Since we nonetheless
want to diagnose such faulty strings, the phrase “s is positive for at least m steps”
should be augmented to include such strings.

An instance of diagnosis problem, Dx, is denoted by D(L, {Σi,o }i∈N , σf ,m) or more
simply, D(L,Σi,o, σf ,m).

If the fusion rule f is given as part of the problem, then the instance is denoted
by D(f, L,Σi,o, σf ,m). Such problems are instance of the f -diagnosis problem, or
f -Dx.

7C1 Equivalence of Diagnosis Problems and Observation
Problems

Theorem 7C1.1
Given a fusion rule f , the class of f -diagnosis problems— f -Dx— reduces to the
class of f -observation problems— f -Obs.

Proof. For a given f -diagnosis problem D(f, L,Σi,o, σf ,m), construct the follow-
ing f -observation problem O(f, L,K,Σi,o), where K = { s ∈ L | s is positive for
at least m steps }.

By construction, (7.1) and (7.2) coincide. □

Theorem 7C1.2
Given a fusion rule f , f -Obs reduces to f -Dx.

Proof. For a given f -observation problem O(f, L,K,Σi,o), construct the following
f -diagnosis problem D(f, L′,Σi,o, σf , 0), where L′ = (L−K) ∪ { sσf | s ∈ K } and
where we have chosen m = 0.

Notice that negative strings in L′ are exactly strings in L−K, and a string in L′ that
is positive (for at least 0 steps)— i.e., one in { sσf | s ∈ K }— uniquely corresponds

102

7D Control Problem

to a string s ∈ K and satisfies s′ = sσf , hence Pi(s) = Pi(s
′σn

f) = Pi(s
′). Thus, by

construction, (7.1) and (7.2) coincide. □

Theorem 7C1.3
The classes of problems f -Obs and f -Dx are equivalent. Moreover, Obs and Dx are
equivalent.

Proof. By Thms. 7C1.1 and 7C1.2. □

It is known that solvability of diagnosis problems is undecidable [ST02]. The
reduction Thm. 7C1.1 offers an alternative route to proving that undecidability.
Namely, we showed that observation problems reduce to diagnosis problems, and
from Tripakis [Tri04] we know that observation problems are undecidable.

7D Control Problem

Recall that the control problem is to construct controllers fσ
i and fusion rules fσ, for

each event σ ∈ Σc, such that

∀ s ∈ K .

sσ ∈ K ⇒ fσ(fσ
1 P1(s), . . . , f

σ
nσ
Pnσ(s)) = 1

∧ sσ ∈ L−K ⇒ fσ(fσ
1 P1(s), . . . , f

σ
nσ
Pnσ(s)) = 0

(7.3)

To avoid trivial unsolvable instances, we assume that an instance is always control-
lable.

An instance of control problem, Con, is denoted by C(L,K, {Σi,o }i∈N , {Σi,c }i∈N),
or more simply, C(L,K,Σi,o,Σi,c).

7D1 Equivalence of Control Problems and Observation Problems

We first revise the problem specification of the control problems.

Theorem 7D1.1
Define the following two languages

Lσ = { s ∈ K | sσ ∈ L }
Kσ = { s ∈ K | sσ ∈ K }.

(7.4)

103

7 Equivalence of Decentralized Observation, Diagnosis, and Control Problems in
Discrete-event Systems

Then (7.3) is equivalent to

∀σ ∈ Σc, s ∈ Lσ .

s ∈ Kσ ⇒ f(fσ
1 P1(s), . . . , f

σ
nσ
Pnσ(s)) = 1

∧ s ∈ Lσ −Kσ ⇒ f(fσ
1 P1(s), . . . , f

σ
nσ
Pnσ(s)) = 0.

(7.5)

Proof. By definition, for all s ∈ Lσ,

sσ ∈ L−K ⇔ s ∈ Lσ −Kσ.

This concludes the proof. □

Theorem 7D1.2
The classes of problems Con reduces to Obs

Proof. For a given control problem C(L,K,Σi,o,Σi,c), construct the following ob-
servation problems

{O(Lσ, Kσ, {Σi,o }i∈Nσ) }σ∈Σc .

By construction, (7.1) and (7.5) coincide. □

From the proof we can see that it is appropriate to decompose a control problem into
a collection of individual (control) sub-problems, each one dealing with a specific
event.

Theorem 7D1.3
The class of problems Obs reduces to Con′.

Proof. For a given observation problem O(L,K,Σi,o), construct a control problem
as follows. First add to the alphabet a distinguished letter γ, and let Σi,c = { γ } for
all i ∈ N . Henceforth, let pr(M) stands for the prefix-closure of language M . Now
let

L′ := pr(Lγ)

= pr(L) ∪ Lγ
K ′ := pr(Kγ ∪ L)

= pr(K) ∪Kγ ∪ pr(L).

The control problem is then

C(L′, K ′,Σi,o,Σi,c).

104

7D Control Problem

It should be verified that the control problem is well-posed. First, it is clear that L′

and K ′ are indeed prefix-closed. To verify controllability, let Σ be the alphabet of L,
and hence Σuc = Σ. Then, for any σ ∈ Σuc and string s ∈ K ′, suppose that sσ ∈ L′.
If sσ ∈ pr(L), sσ ∈ K ′ as desired. If sσ ∈ Lγ, then σ = γ, which contradicts the fact
that γ is a controllable event.

Now compute the languages in (7.4). First, we have

L′
γ = { s ∈ K ′ | sγ ∈ L′ }
= { s ∈ K ′ | sγ ∈ pr(L) ∪ Lγ }
= { s ∈ K ′ | s ∈ L }
= L

where the third line is due to γ being a distinguished letter that is not in L, and
consequently not in pr(L); the fourth line is due to the facts that L ⊆ Kγ ∪ L ⊆
pr(Kγ ∪ L) = K ′. Similarly, we have

K ′
γ = { s ∈ K ′ | sγ ∈ K ′ }
= { s ∈ K ′ | sγ ∈ pr(K) ∪Kγ ∪ pr(L) }
= { s ∈ K ′ | s ∈ K }
= K

where the third line is due to γ being a distinguished letter that is not in L, and
also K being a subset of L. The last line is due to K ⊆ pr(K) ⊆ K ′. Then (7.5)
coincides with (7.1). □

Theorem 7D1.4
The classes of problems Obs and Con are equivalent.

Proof. By Thms. 7D1.2 and 7D1.3. □

The approach of Lin and Wonham [LW88] in dealing with centralized control
problems under partial observation can be interpreted as a special case of the
reduction of control problems to observation problems (i.e., CON ≤T OBS).

Corollary 7D1.5
Solvability of control problems are undecidable in general.

Proof. We have just shown that the observation problems reduces to control prob-
lems, whereas Tripakis demonstrated that solvability of observation problems is
undecidable [Tri04]. □

Corollary 7D1.5 only states the undecidability of control problems when no restric-
tion is placed on the fusion rule. However, in special cases when the fusion rule is
restricted, such as for the architecture given by Cieslak et al. [Cie+88] and Rudie
and Wonham [RW92], solvability can still be decided [RW95].

105

7 Equivalence of Decentralized Observation, Diagnosis, and Control Problems in
Discrete-event Systems

References

[Cie+88] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. “Supervisory
control of discrete-event processes with partial observations”. In: IEEE
Transactions on Automatic Control 33.3 (Mar. 1988), pp. 249–260. DOI:
10.1109/9.402. [cit. on p. 100].

[CK11] H. Chakib and A. Khoumsi. “Multi-Decision Supervisory Control: Paral-
lel Decentralized Architectures Cooperating for Controlling Discrete
Event Systems”. In: IEEE Transactions on Automatic Control 56.11 (Nov.
2011), pp. 2608–2622. DOI: 10.1109/tac.2011.2128730. [cit. on p.
100].

[DLT00] Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis. In:
Discrete Event Dynamic Systems 10.1/2 (2000), pp. 33–86. DOI: 10.
1023/a:1008335115538. [cit. on p. 100. 101].

[KT05] R. Kumar and S. Takai. “Inference-based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, 2005. DOI: 10.1109/CDC.2005.1582701. [cit. on p. 100].

[LW88] F. Lin and W. M. Wonham. “On observability of discrete-event systems”.
In: Information Sciences 44.3 (Apr. 1988), pp. 173–198. DOI: 10.1016/
0020-0255(88)90001-1. [cit. on p. 100. 105].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion and supervi-
sor synthesis in decentralized discrete-event systems”. In: Proceedings
of the American Control Conference. IEEE, 1997. DOI: 10.1109/ACC.
1997.608978. [cit. on p. 100].

[QK06] Wenbin Qiu and R. Kumar. “Decentralized failure diagnosis of discrete
event systems”. In: IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans 36.2 (Mar. 2006), pp. 384–395. DOI:
10.1109/tsmca.2005.853503. [cit. on p. 100. 101].

[RW87] P. J. Ramadge and W. M. Wonham. “Supervisory Control of a Class of
Discrete Event Processes”. In: SIAM Journal on Control and Optimiza-
tion 25.1 (Jan. 1987), pp. 206–230. DOI: 10.1137/0325013. [cit. on p.
100].

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally: decentralized
supervisory control”. In: IEEE Transactions on Automatic Control 37.11
(1992), pp. 1692–1708. DOI: 10.1109/9.173140. [cit. on p. 100. 105].

[RW95] K. Rudie and J. C. Willems. “The computational complexity of de-
centralized discrete-event control problems”. In: IEEE Transactions on
Automatic Control 40.7 (July 1995), pp. 1313–1319. DOI: 10.1109/9.
400469. [cit. on p. 105].

106

https://doi.org/10.1109/9.402
https://doi.org/10.1109/tac.2011.2128730
https://doi.org/10.1023/a:1008335115538
https://doi.org/10.1023/a:1008335115538
https://doi.org/10.1109/CDC.2005.1582701
https://doi.org/10.1016/0020-0255(88)90001-1
https://doi.org/10.1016/0020-0255(88)90001-1
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/tsmca.2005.853503
https://doi.org/10.1137/0325013
https://doi.org/10.1109/9.173140
https://doi.org/10.1109/9.400469
https://doi.org/10.1109/9.400469

References

[Sam+95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis. “Diagnosability of discrete-event systems”. In: IEEE Transac-
tions on Automatic Control 40.9 (1995), pp. 1555–1575. DOI: 10.1109/
9.412626. [cit. on p. 100. 101].

[ST02] R. Sengupta and S. Tripakis. “Decentralized diagnosability of regular
languages is undecidable”. In: Proceedings of the 41st IEEE Conference
on Decision and Control, 2002. IEEE, 2002. DOI: 10.1109/cdc.2002.
1184531. [cit. on p. 100. 101. 103].

[Tri] Stavros Tripakis. Distributed Synthesis. Virtual Lightning Tutorial Se-
ries on Discrete Event Systems 2021. [Accessed May 30, 2022]. URL:
https://owncloud.mpi-sws.org/index.php/s/Q3RKiiQ67GPJJw4/
download?path=%5C%2F%5C&files=04_STripakis_Slides.pdf. [cit.
on p. 99].

[Tri04] Stavros Tripakis. “Undecidable problems of decentralized observation
and control on regular languages”. In: Information Processing Letters
90.1 (Apr. 2004), pp. 21–28. DOI: 10.1016/j.ipl.2004.01.004.
[cit. on p. 100. 101. 103. 105].

[WYL07] Yin Wang, Tae-Sic Yoo, and Stéphane Lafortune. “Diagnosis of Discrete
Event Systems Using Decentralized Architectures”. In: Discrete Event Dy-
namic Systems 17.2 (Jan. 2007), pp. 233–263. DOI: 10.1007/s10626-
006-0006-8. [cit. on p. 100. 101].

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture for Decen-
tralized Supervisory Control of Discrete-Event Systems”. In: Discrete
Event Dynamic Systems 12.3 (2002), pp. 335–377. DOI: 10.1023/a:
1015625600613. [cit. on p. 100].

[YL04] T.-S. Yoo and S. Lafortune. “Decentralized Supervisory Control With
Conditional Decisions: Supervisor Existence”. In: IEEE Transactions on
Automatic Control 49.11 (Nov. 2004), pp. 1886–1904. DOI: 10.1109/
tac.2004.837595. [cit. on p. 100].

107

https://doi.org/10.1109/9.412626
https://doi.org/10.1109/9.412626
https://doi.org/10.1109/cdc.2002.1184531
https://doi.org/10.1109/cdc.2002.1184531
https://owncloud.mpi-sws.org/index.php/s/Q3RKiiQ67GPJJw4/download?path=%5C%2F%5C&files=04_STripakis_Slides.pdf
https://owncloud.mpi-sws.org/index.php/s/Q3RKiiQ67GPJJw4/download?path=%5C%2F%5C&files=04_STripakis_Slides.pdf
https://doi.org/10.1016/j.ipl.2004.01.004
https://doi.org/10.1007/s10626-006-0006-8
https://doi.org/10.1007/s10626-006-0006-8
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2004.837595

8 A Uniform Treatment of
Architectures in Decentralized
Discrete-Event Systems

Solutions to decentralized discrete-event systems problems are characterized by the
way local decisions are fused to yield a global decision. A fusion rule is colloquially
called an architecture. This chapter provides a uniform treatment of architectures in
decentralized discrete-event systems. Current approaches neither provide a direct
way to determine problem solvability conditions under one architecture, nor a
way to compare existing architectures. Determining whether a new architecture
is more general than an existing known architecture relies on producing examples
ad hoc and on individual inspiration that puts the conditions for solvability in each
architecture into some form that admits comparison. From these research efforts, a
method based on morphisms between graphs has been extracted to yield a uniform
approach to decentralized discrete-event system architectures and their attendant
fusion rules. This treatment provides an easy and direct way to compare the fusion
rules — and hence to compare the strength or generality of the corresponding
architectures.

8A Introduction

Many solutions of varying levels of strengths exist for decentralized supervisory
control problems [Cie+88; RW92; PKK97; YL02; YL04; KT05; CK11; RM13; RR22c].
The solutions are given under various architectures, whereby an architecture is
characterized by the way decentralized decisions are combined according to some
mathematical function called a fusion rule. The breadth of an architecture is essen-
tially represented by the class of problems solvable under that architecture. One
architecture is more general than the other if the class of problems solvable under
the former is greater than that solvable under the latter. Taking control problems as
an example, since a common goal of control problems is to produce solutions that
generate as large a set of behaviours as possible (or that are minimally restrictive),
DES research in decentralized systems has as one of its aims to investigate novel
architectures that are more general than existing ones.

In a few simpler settings what distinguishes one architecture from another can be
interpreted as how conflicting decisions are resolved. In a broader set of settings

109

8 A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems

epistemic interpretations are given [RR00; RR07; RR21; RR22c]. However there
does not appear to be a uniform interpretation of the differences.

The traditional approach to investigating new, perhaps more general, architectures
always proceeds in a similar manner. First, a novel architecture is proposed, often by
augmenting or modifying an existing one. Then, a characterization for decentralized
problems to have solutions under the novel architecture is given. If it is intended to
demonstrate that the novel architecture is possibly more general to some existing
architecture, one shows that the problem solvability characterization of the novel
architecture logically entails that of the existing architecture. To demonstrate that
the new architecture is not superfluous, one provides an example that shows that
the class of problems solvable under the new architecture is strictly larger than
that solvable under the existing architecture. Sometimes the novel architecture
turns out to be incomparable to existing ones. An example of this would be the
disjunctive architecture [PKK97], which was shown by Yoo and Lafortune [YL02]
to be incomparable to the prior conjunctive architecture [RW92] first used in
decentralized DES control problems.

The traditional approach is complicated. First, the problem solvability characteriza-
tion is usually presented with little insight provided to indicate how it was derived.
The same remark applies to the presentation of the example problem. Moreover,
the approach is indirect and can be laborious.

This chapter gives a uniform interpretation for decentralized architectures, and
proposes a uniform and simple approach that lends itself easily to direct comparison
of decentralized architectures.

8B Decentralized Problems

For simplicity of discussion, we shall concern ourselves with the following kind
of decentralized observation problems, since it has been shown that the observa-
tion problems and the seemingly more complicated control problems are in fact
equivalent [RR22a]. Hence focusing on just the observation problems simplifies
discussions.

Problem 8B.1 (Decentralized Discrete-Event Systems Observation Problem)
Given alphabet Σ and subalphabets Σi,o ⊆ Σ called the observed alphabets, natural
projections Pi : Σ

∗ → Σ∗
i,o, for agents i ∈ N = { 1, . . . , n }, and given languages

K ⊆ L ⊆ Σ∗, the observation problem is to construct local decision functions fi (also

110

8B Decentralized Problems

informally called observers/agents) and a fusion rule f , such that

∀ s ∈ L.

s ∈ K ⇒ f(f1P1(s), . . . , fnPn(s)) = 1

∧ s ∈ L−K ⇒ f(f1P1(s), . . . , fnPn(s)) = 0.

Informally, the quintessential decentralized observation problem is about producing
local decisions that ensure that when those decisions are fused, strings that are in
some prescribed subset K of L can be distinguished from strings that are not in
K.

Throughout this chapter, we will need the following notations to handle functions
on n-tuples.

Definition 8B.2
For n functions g1, . . . , gn : A→ B, define the broadcasting application (as broadcast-
ing x ∈ A to each gi) as

⟨g1, . . . , gn⟩ : A → Bn

= x 7→ (g1(x), . . . , gn(x))

and the element-wise application (of xi and gi) as

(g1, . . . , gn) : A
n → Bn

= (x1, . . . , xn) 7→ (g1(x1), . . . , gn(xn))

For compactness, we may write ⟨g1, . . . , gn⟩(x) as ⟨gi⟩x and (g1, . . . , gn)(x) as (gi)x.

Since we frequently need to consider when two strings are “indistinguishable”, we
make use of the following definitions.

Definition 8B.3 (Kernel of a Function)
The kernel of a function f , written ker f , is an equivalence relation over the domain
of f , such that (x, y) ∈ ker f wherever f(x) = f(y), i.e., ker f relates elements
indistinguishable by f .

Definition 8B.4 (Partition of a Set)
We say that a set of sets πi is a partition of a set S whenever

⋃
πi = S, i.e., πi covers

S, and
⋂
πi = ∅, i.e., sets in πi are mutually disjoint. Consequently, every element

of S is in exactly one set of πi.

Clearly, kernels of functions over a set S correspond one-to-one with partitions of S.
Henceforth, we will identify kernels and partitions.

111

8 A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems

Definition 8B.5
An equivalence relation R refines an equivalence relation R, written R ≤ S, when-
ever (x, y) ∈ R ⇒ (x, y) ∈ S.

Speaking in terms of partitions, a partition πi refines a partition τj, written πi ≤ τj
if whenever x, y ∈ πi for some i, there is some j such that x, y ∈ τj. Recall that sets
in πi are disjoint, and similarly for τj. Hence, in other words, πi ≤ τj iff for each i,
πi ⊆ τj for some j.

For two strings s1 and s2 in L such that Pi(s1) = Pi(s2), necessarily fiPi(s1) =
fiPi(s2) for all i ∈ N . We call this fact feasibility. Feasibility can be described in
terms of refinement of function kernels: ker(P1, . . . , Pn) ≤ ker(f1P1, . . . , fnPn), i.e.,
the first kernel refines the second.

8C A Uniform Approach to Derive Problem Solvability
Characterization from a Given Fusion Rule

We aim at deriving a uniform approach to compare decentralized architectures
directly. We do so by first giving a uniform way to derive problem solvability char-
acterization, from which we will then derive our direct approach for comparing
architectures. In our approach, we describe a decentralized problem as an obser-
vation graph and a solution based on a fusion rule f as a decision graph. Then the
problem can be expressed as finding a way of folding the observation graph into
the decision graph, which will be formally expressed in terms of graph morphism.
Then the problem solvability condition can be thought as determining if the decision
graph has the capacity to embed the observation graph.

Definition 8C.1 (Observation Graph)
For each subset N ⊆ N , define the symmetric relations ∼N on L, so that s ∼N t if
and only if the two tuples ⟨Pi⟩s = (P1(s), . . . , Pn(s)) and ⟨Pi⟩t = (P1(t), . . . , Pn(t))
differ by exactly the components indexed by N . Formally,

∼N = { (s, t) ∈ L× L | Pi(s) ̸= Pi(t) ⇔ i ∈ N }.

The relations ∼N reflect that exactly the agents in N have changed observation.
We may consider L and ∼N to form an undirected graph (L,∼), which we will call
an observation graph. We denote the observation graph also with L. We consider
the graph as a complete graph where edges are coloured by subsets of N . We also
colour a node s by the truth value of s ∈ K.

112

8C A Uniform Approach to Derive Problem Solvability Characterization from a
Given Fusion Rule

The equivalence relation ∼∅ is exactly the kernel ker⟨Pi⟩.

We provide an example of the observation graph.

Example 8C.2
Consider the observation problem with two agents where L = {a, b, ab, bb}, K = b,
Σ1,o = {a} and Σ2,o = {b}. This example is derived from [RW92, Fig. 1]. We depict
the observation graph as in Fig. 8.1. Each node is labelled by strings s ∈ L, P1(s),
and P2(s), vertically stacked in that order. Vertical/blue/dotted lines denote relation
∼1; horizontal/red/dashed lines denote relation ∼2; and diagonal/purple/solid
lines denote relation ∼1,2. The relation ∼∅ happens to be the identity relation for
this example and is omitted from the graph. Red/singly-bordered nodes indicate
strings in L−K, and green/doubly-bordered nodes indicate string in K.

Figure 8.1: Observation graph for the observation problem in Example 8C.2.

The observation graphs are essentially a more compact alternative to the Kripke
structures used in the works employing epistemic logic interpretations for decen-
tralized problems [RR00; RR07; RR21; RR22c]. The relations ∼N capture various
notions of group knowledge, e.g., what is expressed by distributed knowledge and
by the “everybody knows” operators in epistemic logic [Fag+04].

Without loss of generality, suppose that the local decision functions fi all have
codomain D, for otherwise we can simply take D =

⋃
i∈N cdm(fi), where cdm(fi)

stands for the codomain of fi. Hence, the domain of f is a subset of D × · · · ×D (n
times).

Suppose that f is only defined over a certain collection D of combinations of local
decisions(d1, . . . , dn) ∈ D × · · · ×D, i.e., D = dom(f) ⊆ D × · · · ×D. The size of D
roughly reflects the capacity of f , so that if |D| = 1, f is a constant 1 or 0, and if D
is large enough for a problem at hand, f is virtually unconstrained.

The size of D alone does not fully capture the capacity of the fusion rule. What we
need additionally is the following.

113

8 A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems

Definition 8C.3 (Decision Graph)
For each subset N ⊆ N , define symmetric relations ∼N on D, so that (d1, . . . , dn) ∼N

(d′1, . . . , d
′
n) exactly when the two tuples differ by exactly the components indexed

by N . Formally,

∼N = { ((d1, . . . , dn), (d′1, . . . , d′n)) ∈ D ×D | di ̸= d′i ⇔ i ∈ N }

The relations ∼N reflect that exactly the agents in N have changed their decisions
due to their change of observation. We may consider D and ∼N to form an undi-
rected graph (D,∼), which we will call a decision graph. We denote the decision
graph also with D. We consider the graph as a complete graph where edges are
coloured by subsets of N . We also colour nodes by the values of f at the nodes (0
or 1).

We provide an example of the decision graph.

Example 8C.4
The traditional way of describing the conjunctive architecture is by taking D = { 1,
0 } and f = ∧ [RW92]. For a problem with 2 agents, the decision graph can
be depicted as in Fig. 8.2. Similar to how we depicted the observation graph in
Example 8C.2, vertical/blue/dotted lines denote relation ∼1; horizontal/red/dashed
lines denote relation ∼2; and diagonal/purple/solid lines denote relation ∼1,2. The
relation ∼∅ is the identity relation and is omitted from the graph. Red/singly-
bordered nodes indicate fused decision being 0 and green/doubly-bordered nodes
indicate fused decision being 1.

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 8.2: Decision graph for the conjunctive architecture.

We can regard the decision graph as reflecting the capacity of the architecture.
The notion of capacity arises from the fact that solving an observation problem is
essentially finding a way to fold the observation graph into the decision graph. We
proceed to describe such a folding formally as a graph morphism.

The local decision functions fi can be seen as a mapping from Pi(L) to D, subject to
the following requirement. For any strings s and s′ in L, let N be the (unique) set
such that

s ∼N s′.

114

8C A Uniform Approach to Derive Problem Solvability Characterization from a
Given Fusion Rule

If
(P1(s) , . . . ,Pn(s))

(fi)7−−→ (f1P1(s) , . . . , fnPn(s))
= (d1 , . . . , dn)

(P1(s
′), . . . ,Pn(s

′))
(fi)7−−→ (f1P1(s

′), . . . ,fnPn(s
′))

= (d′1 , . . . , d′n),

then, with letting N ′ be the set such that (d1, . . . , dn) ∼N ′ (d′1, . . . , d
′
n), the mapping

g = ⟨fiPi⟩ = s 7→ (f1P1(s), . . . , fnPn(s)) must satisfy the following graph morphism
conditions GM:

GM-1: Node-Colour Preserving

The mapping g preserves node colouring, that is, g achieves the desired
fused decision.

GM-2: Edge-Colour Intensive

N ⊇ N ′, i.e., only agents with changed observation can change decisions,
though they do not necessarily have to. In other words, the mapping g
may drop some edge colours, but may not add any. This property captures
feasibility.

Conversely, a morphism satisfying the two conditions above gives a solution to the
problem.

We capture the foregoing in the following theorem.

Theorem 8C.5
An observation problem is solvable in a given architecture if and only if there exists
a morphism from the observation graph to the decision graph (representing the
architecture’s fusion rule) satisfying the morphism conditions GM.

Proof. (⇒): By the discussion preceding the theorem, g satisfies GM, as that is how
the definition of GM was motivated.

(⇐): Suppose that there is a morphism g satisfying the morphism conditions
GM. Then a solution can be constructed as follows. For each string s ∈ L, let
(d1, . . . , dn) = g(s), and let fiPi(s) = di for i ∈ N . Since g is edge-colour intensive
(GM-2), the functions fi are well-defined, i.e., if there were s and s′ such that
Pi(s) = Pi(s

′), then fiPi(s) = fiPi(s
′) = di. Since g preserves node colours (GM-1),

fi solves the problem. In other words, there must exist fi such that g = ⟨fiPi⟩. □

We provide an example illustrating Thm. 8C.5.

115

8 A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems

Example 8C.6
The problem in Example 8C.2 is solvable in the conjunctive architecture (Exam-
ple 8C.4), as we can construct the morphism depicted in Fig. 8.3.

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 8.3: Graph morphism from the observation graph in Fig. 8.1 to the decision
graph in Fig. 8.2.

Notice how the leftmost diagonal/purple/solid edge in the graph on top loses its
redness/horizontalness and become a vertical/blue/dotted edge in the graph on the
bottom. All other node/edge colours do not change through the morphism.

The morphism gives a solution to the problem.

The following aspect distinguishes observation graphs from decision graphs. The
equivalence relation ∼∅ on L is ker⟨Pi⟩, whereas ∼∅ on D is an identity relation.
I.e., two distinct strings in L can be related by ∼∅ because they have identical
projections; in contrast, the only way for two decisions in D to be related by ∼∅
is if they are identical. However, this distinction can be removed: in the spirit of
Thm. 8C.5 we can collapse ker⟨Pi⟩ into an identity relation in advance. Then we
revise the observation graphs to be based on L/ker⟨Pi⟩ instead of L.

Definition 8C.7 (Pre-folded Observation Graph)
Let [s] be the set of strings whose projections are the same as s. Formally, let [s] =
{ t ∈ L | ⟨Pi⟩t = ⟨Pi⟩s }, i.e., [s] is the equivalence class of s with respect to ker⟨Pi⟩.
Define the relations ∼N on L/ker⟨Pi⟩ instead of directly on L, so that [s] ∼N [t]
when the two tuples ⟨Pi⟩s = (P1(s), . . . , Pn(s)) and ⟨Pi⟩t = (P1(t), . . . , Pn(t)) differ
by exactly the components indexed by N .

116

8C A Uniform Approach to Derive Problem Solvability Characterization from a
Given Fusion Rule

Moreover, since there is a natural bijection between L/ker⟨Pi⟩ and ⟨Pi⟩L, the pre-
folded observation graph can also be defined in terms of ⟨Pi⟩L. In other words, for
two strings that are indistinguishable to any agent, nothing is lost by aggregating
the nodes representing the two strings.

Notice that the relations ∼N are well-defined, as the definition does not depend
on the specific elements of the equivalence classes used in the definition. Also,
the node colouring of the graph L/ker⟨Pi⟩ is well-defined when ker⟨Pi⟩ refines {K,
L−K }, i.e., for strings s and t in L with identical projections Pi(s) = Pi(t) for all i,
s and t must either be both from K or both not, and thus have the same colouring
in the observation graph L. Hence, whenever we discuss the graph L/ker⟨Pi⟩, we
implicitly assume that ker⟨Pi⟩ refines {K,L−K }. Recall that ker⟨Pi⟩ refining {K,
L−K } is necessary for any observation problem to be solvable.

The following remark is more easily seen if we take ⟨Pi⟩L instead of L/ker⟨Pi⟩ as
the observation graph: recall that the morphism from the observation graph L gives
g = ⟨fiPi⟩. Pre-folding L through ⟨Pi⟩ into ⟨Pi⟩L allows us to take advantage of the
feasibility condition and factor out fi from g. The forgoing is formally expressed in
the following theorem and its attendant proof.

Theorem 8C.8 (restating Thm. 8C.5 in terms of pre-folded observation graph)
An observation problem is solvable in a given architecture if and only if the following
holds:

1. The node colouring of the graph L/ker⟨Pi⟩ is well-defined, namely, ker⟨Pi⟩ ≤
{K,L−K }, i.e., ∀ s, t ∈ L. (∀ i ∈ N . Pi(s) = Pi(t)) ⇒ ¬(s ∈ K ∧ t ∈ L−K).

2. There exists a morphism from the pre-folded observation graph L/ker⟨Pi⟩ to
the decision graph (representing the architecture’s fusion rule) satisfying the
morphism conditions GM.

Proof. Recall that since ⟨Pi⟩L is bijective to L/ker⟨Pi⟩, we can define the pre-
folded observation graph on ⟨Pi⟩L instead. Then the morphism g is precisely (fi)
(contrasting to g = ⟨fiPi⟩ in Thm. 8C.5). □

Recall that our motivation in defining the pre-folded observation graphs is to
eliminate their distinction from the decision graphs. This provides us a mean of
choosing an architecture for the solution. We have the following result.

Theorem 8C.9
An observation problem is solvable if and only if the node colouring of the graph
⟨Pi⟩L is well-defined, i.e., ker⟨Pi⟩ ≤ {K,L−K }.

The proof will be constructive by giving the architecture and local agents.

117

8 A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems

Proof. By Thm. 8C.8, it suffices to take ⟨Pi⟩L as the decision graph. By the moti-
vation of its construction, ⟨Pi⟩L is a legitimate decision graph. Then the required
morphism is the identity mapping. □

The condition that
ker⟨Pi⟩ ≤ {K,L−K },

or more explicitly,

∀ s, t ∈ L. (∀ i ∈ N . Pi(s) = Pi(t)) ⇒ ¬(s ∈ K ∧ t ∈ L−K),

is equivalent to
∀ s ∈ K, t ∈ L−K . ∃ i ∈ N . Pi(s) ̸= Pi(t),

by contraposition. The last expression is called Joint Observability [Tri04]. Hence,
we may call the architecture whose fusion rule is represented by L/ker⟨Pi⟩ as the
joint architecture. As a consequence of Thm. 8C.9, the joint architecture is the most
general architecture. However, as shown by Tripakis [Tri04], the problem solvability
condition— Joint Observability— is undecidable. Nonetheless, in the cases where
Joint Observability can be asserted (for example, by a mathematical proof), the
solution can be trivially found as stated in the proof of Thm. 8C.9.

8D A Uniform Approach to Compare Fusion Rules

The traditional way to compare two fusion rules is by first obtaining a characteri-
zation of problem solvability with each of the fusion rules, and then demonstrate
whether one characterization logically entails the other. In light of the discussion
in the previous section, we can obtain a more direct way to compare fusion rules
without deriving characterizations of problem solvability first.

Recall from the previous section, there is no formal distinction between observation
graphs and decision graphs. Consequently, we have the following result.

Theorem 8D.1
Given fusion rules f , f ′ and their respective decision graphs D, D′, the fusion rule
f ′ is more general than f if and only if there is a graph morphism from D to D′

satisfying the graph morphism conditions GM.

Proof. (⇐): Suppose there is a morphism g : D → D′ satisfying the morphism
conditions GM. Consider an arbitrary observation problem solvable with the fusion
rule f . By Thm. 8C.5, there is a morphism h : L/ker⟨Pi⟩ → D from the observation
graph L/ker⟨Pi⟩ to the decision graph D satisfying the morphism conditions GM.

118

8D A Uniform Approach to Compare Fusion Rules

Then g ◦ h : L/ker⟨Pi⟩ → D′ is a morphism from the observation graph L/ker⟨Pi⟩
to the decision graph D′, which clearly satisfies the morphism conditions GM, and
therefore, by Thm. 8C.5, solves the observation problem. Thus, all problems solvable
with f are also solvable with f ′.

(⇒): Suppose that all observation problems solvable with the fusion rule f are
solvable with f ′. A morphism from D to D′ can be given as follows. Take D as
isomorphically equivalent to the observation graph of some observation problem.
Clearly the observation problem is solvable as the identity morphism over D satisfied
GM. Then the problem is also solvable with the fusion rule f ′ by assumption. By
Thm. 8C.5, there must be a morphism h from D to D′ satisfying the morphism
conditions GM. The morphism h is what we wanted.

To see why we can consider D as an observation graph, we construct an observation
problem whose observation graph is isomorphic to D. Recall that D ⊆ D × · · · ×D.
Construct the following problem. Take Σ = { (d, i) | d ∈ D ∧ i ∈ N } as our
alphabet, where each symbol consists a decision d, tagged by an agent i, where (d, i)
is alternatively written as di. To enforce the desired observability, take Σi,o = { di |
d ∈ D }. Associate to each node v = (d1, · · · , dn) in D the string sv = d11 · · · · · dnn,
so that Pi(sv) = dii as desired. Let sv ∈ K if v is coloured green/doubly-bordered,
and sv ∈ L − K if v is coloured red/singly-bordered. The association gives an
isomorphism from the observation graph to the decision graph D satisfying GM,
where by “isomorphism” we mean that the morphism is bijective and preserves edge
colouring. Note that, precisely in the case when the set of available decisions D is
countably infinite, the alphabet is countably infinite.

The need for an infinite alphabet can be eliminated, as we can encode symbols in
an infinite alphabet in terms of a finite alphabet. Using a finite alphabet instead
however requires more sophistication in specifying the desired observability. Since
we have assumed that the decision set is enumerable, let function ⌞·⌟ : D → N
be the enumeration of decisions in natural numbers. This enumeration function
allows us to speak of the “j-th” decision in the set D. First take Σ =

⋃
i∈N{ 0i, 1i }

and Σi,o = { 0i, 1i }. Then associate to each node v = (d1, · · · , dn) in D the string
sv = 0⌞d1⌟1 11 · · · 0⌞dn⌟n 1n, so that Pi(sv) = 0⌞di⌟i 1i. The intention of the encoding is
that 0 enumerates decisions in unary notation, 1 marks the endings of code words,
and subscripts impose observabilities. In other words, 0⌞di⌟i means a string of 0’s
of length ⌞di⌟. The idea is that if di is the j’th decision in the set D, then it gets
encoded by j 0’s followed by 1.

Since the enumeration ⌞·⌟ is injective, the encoding di 7→ 0⌞di⌟i 1i is also injective.
Moreover, the encoding is prefix-free and hence instantaneously and uniquely
decodable, i.e., the association to v of sv is one-to-one. □

119

8 A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems

We illustrate the methodology in the proof of Thm. 8D.1 on the following example.
The example uses a finite decision set, so that we can display the observation graph
of our example however, the methodology is the same for infinite but countable sets
D.

Example 8D.2
The decision graph of the conjunctive architecture in Example 8C.4 can be seen
as the observation graph of the following problem. Let the enumeration function
⌞·⌟ send the symbol 0 to the number 0 and the symbol 1 to the number 1. With
N = { 1, 2 }, let Σ = { 01, 11, 02, 12 }, Σ1,o = { 01, 11 }, and Σ2,o = { 02, 12 }. Let
L = { 1112, 011112, 110212, 01110212 } and K = { 01110212 }. Then the observation
graph is depicted in Fig. 8.4.

Figure 8.4: An observation graph that is isomorphic to the decision graph in Fig. 8.2.

We now illustrate how two architectures can be directly compared with our approach.
We first show how one architecture can be determined to be strictly more general
than another.

Example 8D.3
Consider the architecture in which the local decisions available are { 0, 1, dk }, where
dk stands for “don’t know”. The associated fusion rule outputs 0 whenever a 0 local
decision is present, and 1 whenever a 1 local decision is present, and is undefined
when either there are conflicting local decisions (both 0 and 1 are present), or all
supervisors don’t know (all supervisors are confused).

This architecture is termed the C&P∧D&A architecture by Ritsuka and Rudie [RR22c]
to correspond to the C&P (conjunctive and permissive) architecture [RW92] and
the D&A architecture (disjunctive and anti-permissive) [PKK97].

The decision graph is depicted in Fig. 8.5, where grey/dash-bordered nodes indicate
disallowed combination of local decisions.

120

8D A Uniform Approach to Compare Fusion Rules

(0, 0)

(1, 0) (1, 1)

(dk, 0)

(1, dk)

(0, dk) (0, 1)

(dk,dk) (dk, 1)

Figure 8.5: Decision graph for the C&P∧D&A architecture.

The C&P∧D&A architecture is known to be weaker than the C&P architecture
(which we have been calling the “conjunctive architecture”). This fact can be read-
ily demonstrated by giving a decision graph morphism. Fig. 8.6 depicts such a
morphism, where for representation purpose we no longer make use of horizontal-
ness/verticalness to denote edge colouring.

(0, 0)

(dk, 0) (1, dk)

(0, dk)

(dk, 1)

(0, 0) (0, 1)

(1, 0) (1, 1)

(1, 1)

Figure 8.6: Graph morphism from the decision graph for the C&P∧D&A architecture
(bottom) to the decision graph for the C&P architecture (top).

One can also see that there can be no morphism going in the other direction, as there
is no green/doubly-bordered node in the bottom graph having both red/dashed and

121

8 A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems

blue/dotted edges to red/singly-bordered nodes, which is necessary for the node
(1, 1) in the top graph.

The following example shows how two seemingly different architectures can be
determined to be equivalent.

Example 8D.4
An alternative way to describe the conjunctive architecture is by using three decisions
{ 0, 1, cd }, where cd is to be interpreted as a conditional decision, so that the fusion
rule outputs 1 when only the conditional decision is present, and otherwise behaves
identically to the fusion rule in the C&P∧D&A architecture as given in Example 8D.3
(although we renamed the decision dk to cd). The decision graph is depicted in
Fig. 8.7 without edges for compactness.

(0, 0)

(1, 0) (1, 1)

(cd, 0)

(1, cd)

(0, cd) (0, 1)

(cd,cd) (cd, 1)

Figure 8.7: Alternative decision graph for the conjunctive architecture.

It is easy to check that this architecture is indeed equivalent to the conjunctive
architecture. Since the graph would be too complex to draw, we describe the
morphisms verbally. The morphism h to the conjunctive architecture is like the
morphism from the C&P∧D&A architecture to the conjunctive architecture as given
in the previous example, where all green/doubly-bordered nodes are sent to (1, 1).
Unlike the C&P∧D&A architecture, now we have a morphism g from the conjunctive
architecture: red/singly-bordered nodes are mapped by reversing h, where the
only green/doubly-bordered node (1, 1) is mapped to (cd, cd). That is, in the C&P
architecture, the decision 1 can be interpreted as a conditional decision, which
aligns with the interpretation in [RR22c].

The foregoing shows that there may exist two architectures that are equivalent in
the sense of having morphisms in both directions, for example, the two architectures
depicted in Figs. 8.2 and 8.7. However, although the architecture in Fig. 8.7 has
more nodes than that of Fig. 8.2, the redundancy in this case serves a purpose: the
original formulation of the conjunctive architecture by Rudie and Wonham [RW92]
essentially forced the decision 1 (enable) to stand for both an agent actively enabling
an event because the agent knew the event was legal, and passively enabling the

122

8E Conclusion

event when the agent didn’t know if the event was legal. To understand the meaning
behind agents’ behaviours, it is useful to separate out the roles played by a decision,
which is exactly what the architecture in Fig. 8.7 does.

The following example shows how two architectures can be determined to be
incomparable.

Example 8D.5
Recall the decision graph for the conjunctive architecture in the left part of Fig. 8.8.
Compare it with the disjunctive architecture [PKK97], also known as the D&A
architecture, whose decision graph is depicted in the right part of Fig. 8.8.

(0, 0) (0, 1)

(1, 0) (1, 1)

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 8.8: Decision graph for the conjunctive architecture recalled in the left, with
the decision graph for the disjunctive architecture in the right.

One can see that there can be no morphism from left to right, as there is no
green/doubly-bordered node in the right graph having both red/dashed and blue/dotted
edges to red/singly-bordered nodes, which is necessary for the node (1, 1) in the
left graph. By a similar argument over the node (0, 0) in the right graph, one can
see that there can be no morphism from right to left either. This is sufficient to
determine that the conjunctive architecture and the disjunctive architecture are
incomparable. This confirms the result by Yoo and Lafortune [YL02].

8E Conclusion

We proposed two useful tools in studying decentralized observation problems:
observation graphs and decision graphs. The decision graphs alone provide a
systematic approach to directly compare decentralized architectures. Together with
observation graphs, we have systematic approaches to derive problem solvabilities
and solutions.

As we can see in the development of decentralized observation problems, the earlier
works propose verifiable characterizations for problem solvability and computable

123

8 A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems

algorithms to construct solutions [Cie+88; RW92; PKK97; YL02; YL04], but sub-
sequent works can no longer provide computable solvability characterizations, let
alone algorithms to construct solutions [KT05; CK11]. Said differently, finding a
graph morphism may be hard, but verifying a witness could be easier. Specifically,
when the graphs involved are finite, the problem can be solved in nondeterministic
polynomial time, but has proofs verifiable in polynomial time. When the graphs are
infinite, the problem can be undecidable, but proofs can be verified. This suggests
that in a situation where the solvability characterization becomes undecidable, one
should attempt to prove the characterization instead. Moreover, when a solution
is “finite” in some sense, e.g., the solution is described by finite state automata, it
remains verifiable.

In summary, fusion rules with unbounded numbers of decisions present challenges
for finding graph morphisms. Nonetheless, for fusion rules with finite, bounded
numbers of decisions, our work provides a direct and easy approach to compare the
corresponding architectures.

References

[Cie+88] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. “Supervisory
control of discrete-event processes with partial observations”. In: IEEE
Transactions on Automatic Control 33.3 (Mar. 1988), pp. 249–260. DOI:
10.1109/9.402. [cit. on p. 109].

[CK11] H. Chakib and A. Khoumsi. “Multi-Decision Supervisory Control: Paral-
lel Decentralized Architectures Cooperating for Controlling Discrete
Event Systems”. In: IEEE Transactions on Automatic Control 56.11 (Nov.
2011), pp. 2608–2622. DOI: 10.1109/tac.2011.2128730. [cit. on p.
109].

[Fag+04] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Vardi.
Reasoning About Knowledge. The MIT Press, 2004. DOI: 10.7551/
mitpress/5803.001.0001. [cit. on p. 113].

[KT05] R. Kumar and S. Takai. “Inference-based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, 2005. DOI: 10.1109/CDC.2005.1582701. [cit. on p. 109].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion and supervi-
sor synthesis in decentralized discrete-event systems”. In: Proceedings
of the American Control Conference. IEEE, 1997. DOI: 10.1109/ACC.
1997.608978. [cit. on p. 109. 110. 120. 123].

124

https://doi.org/10.1109/9.402
https://doi.org/10.1109/tac.2011.2128730
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1109/CDC.2005.1582701
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/ACC.1997.608978

References

[RM13] S. L. Ricker and H. Marchand. “A parity-based architecture for decen-
tralized discrete-event control”. In: 2013 American Control Conference.
IEEE, June 2013. DOI: 10.1109/acc.2013.6580727. [cit. on p. 109].

[RR00] S. L. Ricker and K. Rudie. “Know means no: Incorporating knowledge
into discrete-event control systems”. In: IEEE Transactions on Automatic
Control 45.9 (2000), pp. 1656–1668. DOI: 10.1109/9.880616. [cit. on
p. 110. 113].

[RR07] S. L. Ricker and K. Rudie. “Knowledge Is a Terrible Thing to Waste:
Using Inference in Discrete-Event Control Problems”. In: IEEE Trans-
actions on Automatic Control 52.3 (Mar. 2007), pp. 428–441. DOI:
10.1109/TAC.2007.892371. [cit. on p. 110. 113].

[RR21] K. Ritsuka and Karen Rudie. “A Visualization of Inference-Based Super-
visory Control in Discrete-Event Systems”. In: 2021 60th IEEE Confer-
ence on Decision and Control (CDC). IEEE, Dec. 2021. DOI: 10.1109/
cdc45484.2021.9683210. [cit. on p. 110. 113].

[RR22a] K. Ritsuka and Karen Rudie. A correspondence between control and
observation problems in decentralized discrete-event systems. 2022. arXiv:
2204.10792 [eess.SY]. [cit. on p. 110].

[RR22c] K. Ritsuka and Karen Rudie. “Epistemic interpretations of decentralized
discrete-event system problems”. In: Discrete Event Dynamic Systems
32.3 (June 2022), pp. 359–398. DOI: 10.1007/s10626-022-00363-7.
[cit. on p. 109. 110. 113. 120. 122].

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally: decentralized
supervisory control”. In: IEEE Transactions on Automatic Control 37.11
(1992), pp. 1692–1708. DOI: 10.1109/9.173140. [cit. on p. 109. 110.
113. 114. 120. 122. 124].

[Tri04] Stavros Tripakis. “Undecidable problems of decentralized observation
and control on regular languages”. In: Information Processing Letters
90.1 (Apr. 2004), pp. 21–28. DOI: 10.1016/j.ipl.2004.01.004.
[cit. on p. 118].

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture for Decen-
tralized Supervisory Control of Discrete-Event Systems”. In: Discrete
Event Dynamic Systems 12.3 (2002), pp. 335–377. DOI: 10.1023/a:
1015625600613. [cit. on p. 109. 110. 123. 124].

[YL04] T.-S. Yoo and S. Lafortune. “Decentralized Supervisory Control With
Conditional Decisions: Supervisor Existence”. In: IEEE Transactions on
Automatic Control 49.11 (Nov. 2004), pp. 1886–1904. DOI: 10.1109/
tac.2004.837595. [cit. on p. 109. 124].

125

https://doi.org/10.1109/acc.2013.6580727
https://doi.org/10.1109/9.880616
https://doi.org/10.1109/TAC.2007.892371
https://doi.org/10.1109/cdc45484.2021.9683210
https://doi.org/10.1109/cdc45484.2021.9683210
https://arxiv.org/abs/2204.10792
https://doi.org/10.1007/s10626-022-00363-7
https://doi.org/10.1109/9.173140
https://doi.org/10.1016/j.ipl.2004.01.004
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2004.837595

9 Discussion

This chapter first summarizes the achievements of the thesis.

First, due to the equivalence of observation, control, and diagnosis problems as
demonstrated in Chapter 7, we will henceforth speak of “decentralized problems”
and “decentralized architectures” without further qualifications.

As demonstrated in Chapters 3 to 5, we are able to cast a number of existing decen-
tralized architectures in a unified framework based on epistemic logic. The unified
framework provides a more intuitive understanding of these architectures and allows
one to derive solvability conditions and solution specifications methodologically
for these architectures. Chapter 6 additionally provides a visual alternative to this
formalism.

Chapter 8 proposes a graph-theoretic translation of the epistemic logic formalism as
a unifying framework. The chapter greatly simplifies the notation-heaviness of the
epistemic logic formalism, while preserving its intuitiveness.

The work here opens up the following avenues for future research. First, given the
undecidability, one may ask if there is a suitably large decidable subclass of problems
whose solvability is decidable. On the other hand, one may also ask if there is a
suitably general architecture under which the problem solvability is decidable. Both
of the two questions above involve a judgement of what is suitable, i.e., evaluation
against real applications. However, to the author’s knowledge, there does not exist
a benchmark of realistic problems for evaluating architectures.

Moreover, a specific problem about closed-loop systems is that if the desired be-
haviour cannot be synthesized (under a prescribed architecture), it is desired to
modify the problem requirement and construct a maximally-permissive (or in other
words, least-restrictive) control policy (under the same architecture). While the
problem has been solved for a few simple architectures, no work seems to have been
done for the more complicated architectures, let alone with the use of a uniform
approach to solve such problems.

The direct approach for comparing architectures provided in Chapter 8 can aid
evaluating an architecture’s generality, so that one does not have to compare
architectures indirectly through their problem solvability conditions, where the
latter method may require one to come up with a clever example to show that an
architecture is strictly more general than another. Then, one may wish to follow
the approach demonstrated in Chapter 4 to methodologically derive a problem

127

9 Discussion

solvability condition and synthesize a solution for a chosen architecture. Finally,
although there is no definite solution for finding a maximally-permissive control
policy, the discussion in Chapter 3 might be a prominent starting point for further
research.

128

Bibliography

[Cie+88] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. “Supervisory
control of discrete-event processes with partial observations”. In: IEEE
Transactions on Automatic Control 33.3 (Mar. 1988), pp. 249–260. DOI:
10.1109/9.402. [cite on Chapter 1 (p. 1), 3 (p. 18), 4 (pp. 59, 60), 7 (pp.
100, 105), 8 (pp. 109, 124)].

[CK08a] Hicham Chakib and Ahmed Khoumsi. “Multi-decision C&P∨D&A ar-
chitecture for the decentralized control of discrete event systems”. In:
2008 IEEE International Conference on Automation Science and Engi-
neering. IEEE, Aug. 2008. DOI: 10.1109/COASE.2008.4626526. [cite on
Chapter 1 (p. 1)].

[CK08b] Hicham Chakib and Ahmed Khoumsi. “Multi-decision decentralized
control of discrete event systems : Application to the C&P architecture”.
In: 2008 9th International Workshop on Discrete Event Systems. IEEE,
2008. DOI: 10.1109/WODES.2008.4605993. [cite on Chapter 1 (p. 1)].

[CK11] H. Chakib and A. Khoumsi. “Multi-Decision Supervisory Control: Paral-
lel Decentralized Architectures Cooperating for Controlling Discrete
Event Systems”. In: IEEE Transactions on Automatic Control 56.11 (Nov.
2011), pp. 2608–2622. DOI: 10.1109/tac.2011.2128730. [cite on
Chapter 1 (p. 1), 7 (p. 100), 8 (pp. 109, 124)].

[CL07] Christos G. Cassandras and Stéphane Lafortune. Introduction to Discrete
Event Systems. Second. Springer-Verlag GmbH, 2007. 772 pp. [cite on
Chapter 2 (pp. 5, 6)].

[DLT00] Rami Debouk, Stéphane Lafortune, and Demosthenis Teneketzis. In:
Discrete Event Dynamic Systems 10.1/2 (2000), pp. 33–86. DOI: 10.
1023/a:1008335115538. [cite on Chapter 7 (pp. 100, 101)].

[Fag+04] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Vardi.
Reasoning About Knowledge. The MIT Press, 2004. DOI: 10.7551/
mitpress/5803.001.0001. [cite on Chapter 2 (p. 10), 8 (p. 113)].

[HM90] Joseph Y. Halpern and Yoram Moses. “Knowledge and common knowl-
edge in a distributed environment”. In: Journal of the ACM 37.3 (July
1990), pp. 549–587. DOI: 10.1145/79147.79161. [cite on Chapter 2 (p.
10)].

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computation. 3rd ed. USA:
Addison-Wesley Longman Publishing Co., Inc., 2006. [cite on Chapter 6
(p. 88)].

I

https://doi.org/10.1109/9.402
https://doi.org/10.1109/COASE.2008.4626526
https://doi.org/10.1109/WODES.2008.4605993
https://doi.org/10.1109/tac.2011.2128730
https://doi.org/10.1023/a:1008335115538
https://doi.org/10.1023/a:1008335115538
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1145/79147.79161

Bibliography

[KC18] Ahmed Khoumsi and Hicham Chakib. “Decentralized Supervisory Con-
trol of Discrete Event Systems: An Arborescent Architecture to Realize
Inference-Based Control”. In: IEEE Transactions on Automatic Control
63.12 (Dec. 2018), pp. 4278–4285. DOI: 10.1109/tac.2018.2811785.
[cite on Chapter 1 (p. 1)].

[KT05] R. Kumar and S. Takai. “Inference-based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: Proceedings of the 44th IEEE Conference on Decision and
Control. IEEE, 2005. DOI: 10.1109/CDC.2005.1582701. [cite on Chapter
1 (p. 1), 3 (p. 39), 6 (p. 87), 7 (p. 100), 8 (pp. 109, 124)].

[KT07] R. Kumar and S. Takai. “Inference-Based Ambiguity Management in De-
centralized Decision-Making: Decentralized Control of Discrete Event
Systems”. In: IEEE Transactions on Automatic Control 52.10 (Oct. 2007),
pp. 1783–1794. DOI: 10.1109/TAC.2007.906158. [cite on Chapter 4 (pp.
61, 72, 75, 76), 5 (pp. 79, 81), 6 (pp. 85, 86, 87, 88, 90, 91, 92, 94, 95)].

[LW88] F. Lin and W. M. Wonham. “On observability of discrete-event systems”.
In: Information Sciences 44.3 (Apr. 1988), pp. 173–198. DOI: 10.1016/
0020-0255(88)90001-1. [cite on Chapter 3 (p. 39), 7 (pp. 100, 105)].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion and supervi-
sor synthesis in decentralized discrete-event systems”. In: Proceedings
of the American Control Conference. IEEE, 1997. DOI: 10.1109/ACC.
1997.608978. [cite on Chapter 1 (p. 1), 2 (pp. 6, 9), 3 (pp. 17, 18, 19, 25,
37), 4 (pp. 59, 60), 5 (p. 82), 6 (p. 85), 7 (p. 100), 8 (pp. 109, 110, 120, 123,
124)].

[QK06] Wenbin Qiu and R. Kumar. “Decentralized failure diagnosis of discrete
event systems”. In: IEEE Transactions on Systems, Man, and Cybernetics
- Part A: Systems and Humans 36.2 (Mar. 2006), pp. 384–395. DOI:
10.1109/tsmca.2005.853503. [cite on Chapter 7 (pp. 100, 101)].

[RM13] S. L. Ricker and H. Marchand. “A parity-based architecture for decen-
tralized discrete-event control”. In: 2013 American Control Conference.
IEEE, June 2013. DOI: 10.1109/acc.2013.6580727. [cite on Chapter 8
(p. 109)].

[RR00] S. L. Ricker and K. Rudie. “Know means no: Incorporating knowledge
into discrete-event control systems”. In: IEEE Transactions on Automatic
Control 45.9 (2000), pp. 1656–1668. DOI: 10.1109/9.880616. [cite on
Chapter 1 (p. 1), 2 (p. 10), 3 (pp. 23, 24, 47), 4 (pp. 75, 76), 8 (pp. 110,
113)].

[RR07] S. L. Ricker and K. Rudie. “Knowledge Is a Terrible Thing to Waste:
Using Inference in Discrete-Event Control Problems”. In: IEEE Trans-
actions on Automatic Control 52.3 (Mar. 2007), pp. 428–441. DOI:

II

https://doi.org/10.1109/tac.2018.2811785
https://doi.org/10.1109/CDC.2005.1582701
https://doi.org/10.1109/TAC.2007.906158
https://doi.org/10.1016/0020-0255(88)90001-1
https://doi.org/10.1016/0020-0255(88)90001-1
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/tsmca.2005.853503
https://doi.org/10.1109/acc.2013.6580727
https://doi.org/10.1109/9.880616

10.1109/TAC.2007.892371. [cite on Chapter 1 (p. 1), 2 (pp. 10, 12, 13,
14), 3 (pp. 24, 39, 47), 4 (pp. 60, 64, 72, 75), 5 (p. 82), 8 (pp. 110, 113)].

[RR21] K. Ritsuka and Karen Rudie. “A Visualization of Inference-Based Super-
visory Control in Discrete-Event Systems”. In: 2021 60th IEEE Confer-
ence on Decision and Control (CDC). IEEE, Dec. 2021. DOI: 10.1109/
cdc45484.2021.9683210. [cite on Chapter 1 (p. 3), 3 (p. 39), 4 (p. 72), 8
(pp. 110, 113)].

[RR22a] K. Ritsuka and Karen Rudie. A correspondence between control and
observation problems in decentralized discrete-event systems. 2022. arXiv:
2204.10792 [eess.SY]. [cite on Chapter 1 (p. 3), 4 (p. 66), 8 (p. 110)].

[RR22b] K. Ritsuka and Karen Rudie. A Uniform Treatment of Architectures
and Fusion Rules in Decentralized Discrete-Event Systems. 2022. arXiv:
2210.16511 [eess.SY]. [cite on Chapter 1 (p. 3)].

[RR22c] K. Ritsuka and Karen Rudie. “Epistemic interpretations of decentralized
discrete-event system problems”. In: Discrete Event Dynamic Systems
32.3 (June 2022), pp. 359–398. DOI: 10.1007/s10626-022-00363-7.
[cite on Chapter 1 (p. 3), 4 (pp. 60, 61), 5 (p. 82), 8 (pp. 109, 110, 113, 120,
122)].

[RR23] K. Ritsuka and K. Rudie. Do What You Know: Coupling Knowledge with
Action in Discrete-Event Systems. Submitted for publication. 2023. [cite
on Chapter 1 (p. 3), 3 (pp. 17, 23, 26, 31, 32, 33, 34, 39), 6 (p. 96)].

[RW87] P. J. Ramadge and W. M. Wonham. “Supervisory Control of a Class of
Discrete Event Processes”. In: SIAM Journal on Control and Optimiza-
tion 25.1 (Jan. 1987), pp. 206–230. DOI: 10.1137/0325013. [cite on
Chapter 3 (p. 23), 7 (p. 100)].

[RW90] Karen Rudie and W. Murray Wonham. “The infimal prefix-closed and
observable superlanguange of a given language”. In: Systems & Control
Letters 15.5 (Dec. 1990), pp. 361–371. DOI: 10.1016/0167-6911(90)
90059-4. [cite on Chapter 3 (pp. 37, 43)].

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally: decentralized
supervisory control”. In: IEEE Transactions on Automatic Control 37.11
(1992), pp. 1692–1708. DOI: 10.1109/9.173140. [cite on Chapter 1 (p.
1), 2 (pp. 9, 12), 3 (pp. 17, 18, 19, 20, 37), 4 (pp. 59, 60), 5 (p. 82), 6 (p.
85), 7 (pp. 100, 105), 8 (pp. 109, 110, 113, 114, 120, 122, 124)].

[RW95] K. Rudie and J. C. Willems. “The computational complexity of de-
centralized discrete-event control problems”. In: IEEE Transactions on
Automatic Control 40.7 (July 1995), pp. 1313–1319. DOI: 10.1109/9.
400469. [cite on Chapter 7 (p. 105)].

III

https://doi.org/10.1109/TAC.2007.892371
https://doi.org/10.1109/cdc45484.2021.9683210
https://doi.org/10.1109/cdc45484.2021.9683210
https://arxiv.org/abs/2204.10792
https://arxiv.org/abs/2210.16511
https://doi.org/10.1007/s10626-022-00363-7
https://doi.org/10.1137/0325013
https://doi.org/10.1016/0167-6911(90)90059-4
https://doi.org/10.1016/0167-6911(90)90059-4
https://doi.org/10.1109/9.173140
https://doi.org/10.1109/9.400469
https://doi.org/10.1109/9.400469

Bibliography

[Sam+95] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis. “Diagnosability of discrete-event systems”. In: IEEE Transac-
tions on Automatic Control 40.9 (1995), pp. 1555–1575. DOI: 10.1109/
9.412626. [cite on Chapter 7 (pp. 100, 101)].

[ST02] R. Sengupta and S. Tripakis. “Decentralized diagnosability of regular
languages is undecidable”. In: Proceedings of the 41st IEEE Conference
on Decision and Control, 2002. IEEE, 2002. DOI: 10.1109/cdc.2002.
1184531. [cite on Chapter 7 (pp. 100, 101, 103)].

[TK08] Shigemasa Takai and Ratnesh Kumar. “Synthesis of Inference-Based
Decentralized Control for Discrete Event Systems”. In: IEEE Trans-
actions on Automatic Control 53.2 (Mar. 2008), pp. 522–534. DOI:
10.1109/tac.2007.915171. [cite on Chapter 4 (p. 72), 6 (pp. 86, 87, 91,
92, 95)].

[TKU05] S. Takai, R. Kumar, and T. Ushio. “Characterization of co-observable
languages and formulas for their super/sublanguages”. In: IEEE Trans-
actions on Automatic Control 50.4 (Apr. 2005), pp. 434–447. DOI:
10.1109/tac.2005.844724. [cite on Chapter 2 (p. 9), 3 (pp. 17, 18, 19,
27, 29, 40, 41, 42, 43)].

[Tri] Stavros Tripakis. Distributed Synthesis. Virtual Lightning Tutorial Se-
ries on Discrete Event Systems 2021. [Accessed May 30, 2022]. URL:
https://owncloud.mpi-sws.org/index.php/s/Q3RKiiQ67GPJJw4/
download?path=%5C%2F%5C&files=04_STripakis_Slides.pdf. [cite
on Chapter 7 (p. 99)].

[Tri04] Stavros Tripakis. “Undecidable problems of decentralized observation
and control on regular languages”. In: Information Processing Letters
90.1 (Apr. 2004), pp. 21–28. DOI: 10.1016/j.ipl.2004.01.004. [cite
on Chapter 7 (pp. 100, 101, 103, 105), 8 (p. 118)].

[TU01] S. Takai and T. Ushio. “Strong co-observability conditions for decen-
tralized supervisory control of discrete event systems”. In: Proceedings
of the 40th IEEE Conference on Decision and Control. IEEE, 2001. DOI:
10.1109/cdc.2001.980821. [cite on Chapter 2 (p. 9), 3 (pp. 26, 29, 47)].

[TU02] Shigemasa Takai and Toshimitsu Ushio. “A modified normality condi-
tion for decentralized supervisory control of discrete event systems”.
In: Automatica 38.1 (Jan. 2002), pp. 185–189. DOI: 10.1016/s0005-
1098(01)00187-x. [cite on Chapter 3 (p. 53)].

[WC18] W. Murray Wonham and Kai Cai. Supervisory Control of Discrete-Event
Systems. Springer-Verlag GmbH, 2018. 487 pp. [cite on Chapter 2 (p. 5)].

[WYL07] Yin Wang, Tae-Sic Yoo, and Stéphane Lafortune. “Diagnosis of Discrete
Event Systems Using Decentralized Architectures”. In: Discrete Event Dy-
namic Systems 17.2 (Jan. 2007), pp. 233–263. DOI: 10.1007/s10626-
006-0006-8. [cite on Chapter 7 (pp. 100, 101)].

IV

https://doi.org/10.1109/9.412626
https://doi.org/10.1109/9.412626
https://doi.org/10.1109/cdc.2002.1184531
https://doi.org/10.1109/cdc.2002.1184531
https://doi.org/10.1109/tac.2007.915171
https://doi.org/10.1109/tac.2005.844724
https://owncloud.mpi-sws.org/index.php/s/Q3RKiiQ67GPJJw4/download?path=%5C%2F%5C&files=04_STripakis_Slides.pdf
https://owncloud.mpi-sws.org/index.php/s/Q3RKiiQ67GPJJw4/download?path=%5C%2F%5C&files=04_STripakis_Slides.pdf
https://doi.org/10.1016/j.ipl.2004.01.004
https://doi.org/10.1109/cdc.2001.980821
https://doi.org/10.1016/s0005-1098(01)00187-x
https://doi.org/10.1016/s0005-1098(01)00187-x
https://doi.org/10.1007/s10626-006-0006-8
https://doi.org/10.1007/s10626-006-0006-8

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture for Decen-
tralized Supervisory Control of Discrete-Event Systems”. In: Discrete
Event Dynamic Systems 12.3 (2002), pp. 335–377. DOI: 10.1023/a:
1015625600613. [cite on Chapter 1 (p. 1), 2 (p. 6), 3 (pp. 18, 19, 31), 4 (pp.
59, 60), 5 (p. 82), 6 (p. 85), 7 (p. 100), 8 (pp. 109, 110, 123, 124)].

[YL04] T.-S. Yoo and S. Lafortune. “Decentralized Supervisory Control With
Conditional Decisions: Supervisor Existence”. In: IEEE Transactions on
Automatic Control 49.11 (Nov. 2004), pp. 1886–1904. DOI: 10.1109/
tac.2004.837595. [cite on Chapter 1 (p. 1), 2 (pp. 7, 12), 3 (pp. 37, 39), 4
(pp. 59, 61), 5 (p. 82), 7 (p. 100), 8 (pp. 109, 124)].

[YL05] Tae-Sic Yoo and S. Lafortune. “Decentralized supervisory control with
conditional decisions: supervisor realization”. In: IEEE Transactions on
Automatic Control 50.8 (Aug. 2005), pp. 1205–1211. DOI: 10.1109/
tac.2005.852556. [cite on Chapter 4 (pp. 59, 75)].

V

https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2004.837595
https://doi.org/10.1109/tac.2005.852556
https://doi.org/10.1109/tac.2005.852556

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Symbols
	List of Abbreviations
	Introduction
	Preliminaries
	Discrete-Event Systems
	Decentralized Supervisory Control with Partial Observations

	Epistemic Logic
	Epistemic Logic in DSCOP

	References

	Epistemic Interpretations of Decentralized Discrete-Event System Problems
	Introduction
	Co-observability Conditions and Their Strong Versions
	Epistemic Expressions of decentralized control conditions
	C&P co-observability
	D&A co-observability
	Strong C&P co-observability
	Strong D&A co-observability
	C&P∧D&A co-observability
	C&P∨D&A co-observability
	Local Observability
	Strong Local Observability
	Strong C&P∧D&A co-observability
	Weak Co-normality
	Summary and Discussion

	Discussion on Closure Under Set Union
	Strong C&P∧D&A Co-observability is not Closed under Set Union
	Local Observability is not Closed under Set Union
	Strong Local Observability is Closed under Set Union
	Revisiting Strong C&P∧D&A Co-observability

	Conclusion
	References

	Do What You Know: Coupling Knowledge with Action in Discrete-Event Systems
	Introduction
	Direct Derivation of Supervisor Existence and Realization for Conditional Architecture
	A Visualization to Aid in the Revision of Problem Requirements

	Conclusion
	References

	Unification of the Conditional Architecture and Inference-Based Architectures
	References

	A Visualization of Inference-Based Supervisory Control in Discrete-Event Systems
	Introduction
	Inference-based Architecture
	Visualization
	Conclusions
	References

	Equivalence of Decentralized Observation, Diagnosis, and Control Problems in Discrete-event Systems
	Introduction
	Observation Problem
	Diagnosis Problem
	Equivalence of Diagnosis Problems and Observation Problems

	Control Problem
	Equivalence of Control Problems and Observation Problems

	References

	A Uniform Treatment of Architectures in Decentralized Discrete-Event Systems
	Introduction
	Decentralized Problems
	A Uniform Approach to Derive Problem Solvability Characterization from a Given Fusion Rule
	A Uniform Approach to Compare Fusion Rules
	Conclusion
	References

	Discussion
	Bibliography

