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Abstract

This thesis provides modelling formalisms for decentralized problems of
discrete-event systems for better derivation of problem solvability and solu-
tion constructions and for comparison of one decentralized architecture with
another.

The thesis establishes equivalence between three classes of problems— ob-
servation problems, diagnosis problems, and control problems— in terms of
Turing reduction. Through the reduction, the thesis demonstrates that the
solvability of the control problems is undecidable, alongside the similar result
known for the other two classes of problems. Moreover, since the observation
problems are formally simpler, the thesis advocates focusing research effort
on these problems whenever suitable, i.e., when the results can transfer to
the other two classes of problems via the reduction.

The thesis then puts into uniform frameworks solutions to decentralized
problems, characterized by their architectures. Two such frameworks have
been proposed, one formalized using epistemic logic, while the other in terms
of graph theory. Both frameworks capture the essential indistinguishability
relations.

The epistemic logic formalism is primarily suited for methodologically deriv-
ing problem solvability conditions and solution constructions under a given
architecture. The methodology promotes coupling knowledge and action, so
that a problem solvability condition directly expresses what knowledge an
agent needs to perform its actions. This contrasts with the traditional case-
by-case, ad hoc approach. The resulting epistemic expressions are closer to
human reasoning than the traditionally-used predicate logic. We provide
epistemic expressions for well-known problem solvability conditions. Being
able to circumscribe a collection of such conditions in a uniform and concise
modelling paradigm, we are able to refine the known hierarchy of such
conditions in a more concise manner.
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The graph theoretical formalism provides a direct approach to compare
architectures. This contrasts with the traditional approach in which one
first derives problem solvability conditions for the architectures to be com-
pared, and then shows that one condition (strictly) implies another. The
approach also gives a visually intuitive model for understanding why a given
architecture is superior to another.
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1 Introduction

This thesis establishes two formal modelling frameworks for studying
the observation problems of discrete-event systems (DES).

The research is motivated by a research collaboration with General
Dynamics Land Systems Canada (GDLS-C) and Defence Research and
Development Canada (DRDC), where we were interested in maintaining
secrecy in the operation of a group of autonomous agents. At that time,
we inspected one of the methods to maintain secrecy: decentralized
supervisory control. We noticed that, while the problem of decentralized
supervisory control has been partially solved under numerous architec-
tures [Cie+88; RW92; PKK97; YL02; RR00; YL04; RR07; KT05; KC18;
CK08a; CK08b; CK11], there is no proof or even indication for any of
these architectures to be the most general. Specifically, an architecture
later in the forgoing list solves more problems than one earlier in the
list, while the list is not known to stop from growing. An interesting
incidence is that Yoo and Lafortune [YL02] called their architecture the
“general architecture” [YL02], which subsumes the three architectures
listed before it. However as we are seeing now, many architectures that
are more “general” have come thereafter.

Moreover, as the list of architectures grows, the formalisms of the new
architectures become more and more complicated. First, it is becoming
more difficult to compare new architectures. In addition to the complex
specifications of the architectures, the traditional approach is indirect:
one has to derive problem solvability conditions for the architectures and
compare the conditions instead. Then, all existing problem solvability
conditions seem to be derived in a case-by-case, ad-hoc manner, with
no uniform methodology. Consequently, it has become harder to verify
such conditions for more complicated architectures, let alone to derive
the conditions.
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1 Introduction

The thesis addresses the issues above by providing two unifying frame-
works, one in terms of epistemic logic and the other based on graph
theory.

Our epistemic logic formalism provides a concise and intuitive language
compared to the currently used predicate logic language in describing
multi-agent behaviour under partial observation. With this formalism,
the thesis advocates a methodology of linking knowledge and action,
which allows us to see easily what knowledge an agent must possess to
achieve the desired control strategy. This methodology yielded more
concise and intuitive expressions for problem solvability conditions of
various existing architectures. The effort yielded a refined hierarchy of
existing architectures, both in the sense that the conditions are put in a
unified language, from which comparisons fall out, and that it allowed
more existing architectures to be positioned easily in the hierarchy.

Then, an alternative, graph-theoretical framework for decentralized
problems is proposed. This framework circumvents the indirect ap-
proach to compare two architectures by providing a direct one.

Finally, it should be noted that while the discussion above is articulated
in the context of decentralized supervisory control problems, they apply
to decentralized observation problems and decentralized diagnosis prob-
lems as well. In fact, due to the equivalence between the three classes of
problems established by this thesis, some of the results mentioned above
were achieved by studying the formally simpler observation problems
instead.

The thesis is organized as follows. The thesis begins by unifying archi-
tectures for control problems under the umbrella formalism of epistemic
logic.

• Chapter 2 presents essential definitions.

2



• Chapter 3 puts some decentralized control architectures into a
uniform framework of epistemic logic.

• Chapter 4 extends Chapter 3 by adding the conditional architecture
into the framework. In the meantime, Chapter 4 demonstrates that
with epistemic logic, problem solvability conditions and solutions
can be derived systematically.

• Chapter 5 formally unifies the conditional architecture with the
inference-based architecture.

• Chapter 6 provides a visual alternative to the epistemic logic
formalism.

The thesis then proceeds to Chapter 7, where we demonstrate that
observation problems are equivalent to control problems as well as to
diagnosis problems. The result presented here indicates that results in
Chapters 3, 4 and 6 can be easily adapted to the observation problems.
Furthermore, the equivalence directly entails unsolvability of the control
problems in the general case.

Chapter 8 proposes a graph-theoretic translation of the epistemic logic
formalism of the unifying framework. The chapter promotes the graph-
theoretic formalism primarily as a direct approach for comparing archi-
tectures

Finally, Chapter 9 summarizes the thesis.

Some of the chapters are published:

Chapter 3
K. Ritsuka and Karen Rudie. “Epistemic interpretations of de-
centralized discrete-event system problems”. In: Discrete Event
Dynamic Systems 32.3 (June 2022), pp. 359–398. DOI: 10.1007/
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https://doi.org/10.1007/s10626-022-00363-7
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s10626-022-00363-7

Chapter 4
K. Ritsuka and K. Rudie. Do What You Know: Coupling Knowledge
with Action in Discrete-Event Systems. Submitted for publication.
2023

An old draft is available as arXiv:2108.02000. This preprint ver-
sion differs substantially from the current version submitted for
peer-review.

Chapter 6
K. Ritsuka and Karen Rudie. “A Visualization of Inference-Based
Supervisory Control in Discrete-Event Systems”. In: 2021 60th
IEEE Conference on Decision and Control (CDC). IEEE, Dec. 2021.
DOI: 10.1109/cdc45484.2021.9683210

Chapter 7 An old, significantly different version was available on arXiv,
which does not include discussion on diagnosis problems.
K. Ritsuka and Karen Rudie. A correspondence between control and
observation problems in decentralized discrete-event systems. 2022.
arXiv: 2204.10792 [eess.SY]

Chapter 8
K. Ritsuka and Karen Rudie. A Uniform Treatment of Architectures
and Fusion Rules in Decentralized Discrete-Event Systems. 2022.
arXiv: 2210.16511 [eess.SY]
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2 Preliminaries

The work in this thesis uses discrete-event system models and also
epistemic logic as a language to describe supervisory control. Therefore,
in this chapter we provide a brief summary of the necessary concepts
from each domain.

2A Discrete-Event Systems

A discrete-event system is a system with finite and discrete state space,
which executes actions and changes its internal state according to only
its current state. We call the occurrence of an action an event. We
consider the system’s behaviours to be all finite sequences of events the
system can generate from a certain initial state.

Formally we define discrete-event systems following Wonham and Cai
[WC18] and Cassandras and Lafortune [CL07].

Definition 2A.1
Denote a plant modelled as a finite state automaton (FSA) by

G = (Σ, Q, δ, q0)

where Σ is a finite set of events, Q a finite set of states, δ ⊆ Q× Σ×Q
the transition relation, and q0 ∈ Q the unique initial state.

Without loss of generality, it is assumed that δ is univalent and can be
seen as a partial function δ : Q × Σ ↛ Q. We write δ(p, σ) = q for the
unique q s.t. (p, σ, q) ∈ δ if such q exists. In this case we write δ(p, σ)!
and say δ(p, σ) is defined when the particular value of q is not of interest.

5



2 Preliminaries

The collection of all finite sequences over Σ is denoted as Σ∗. An element
of Σ∗ represents a sequence of event occurrences and is called a string.
The empty string is denoted by ε.

The transition function δ can be inductively extended on its second
argument so that δ : Q× Σ∗ ↛ Q.

In cases where confusion could arise, we superscript components of an
automaton with the automaton’s name. For example, we use QG to refer
to the state set of G.

The language generated by G is defined as

L(G) = { s ∈ Σ∗ | δ(q0, s)! }

A language L is said to be prefix-closed whenever for all strings sσ ∈ L,
it is always the case that s ∈ L.

The language L(G) is interpreted as the set of physically possible be-
haviours of G. By definition, L(G) is always prefix-closed.

2A1 Decentralized Supervisory Control with Partial
Observations

A plant’s behaviours may not all be desirable. In such a case, we
constrain its behaviours through supervisory control. In the problems
we consider, we allow an arbitrary number of supervisors to jointly
perform the control, where each supervisor observes and controls a
subset of events.

6



2A Discrete-Event Systems

Decentralized control has been examined by many DES researchers.
For a more extensive discussion, see Cassandras and Lafortune [CL07,
Chapter 3.8] on decentralized control.

With an event being controlled potentially by multiple supervisors, a
mechanism to combine control decisions by these supervisors is neces-
sary. Prosser, Kam, and Kwatny [PKK97] explicitly name such mecha-
nisms fusion rules. Later work by Yoo and Lafortune [YL02] realized
that fusion rules for each event can be chosen separately and indepen-
dently.

Formally, we express the decentralized supervisory architecture as fol-
lows.
Definition 2A1.1
Let N = {f1, . . . , fn} be a finite set of n supervisors for plant G. We
write i instead of fi when referring to the supervisor per se; this choice
is determined by readability.

For each supervisor i ∈ N , let Σi,c,Σi,o ⊆ Σ be the sets of controllable
and observable events for Supervisor i, resp. Denote the set of events
controlled by some supervisors Σc =

⋃
i∈N Σi,c, and the set of events

not controlled by any supervisor Σuc =
⋂

i∈N Σ− Σi,c. Hence we have
Σuc = Σ− Σc. The sets Σo and Σuo are defined similarly. Let Nσ = { i ∈
N | σ ∈ Σi,c } be the set of agents controlling σ.

For each i ∈ N , define a function that represents a supervisor’s obser-
vation. Define the projection function Pi : Σ → Σi,o ∪ { ε } such that
Pi(σ) = σ if σ ∈ Σi,o and Pi(σ) = ε otherwise. Informally, Pi erases
unobservable events and preserves observable events in their original
sequential order. Extend Pi from Σ to Σ∗ inductively.

With a slight abuse of notation, we use Pi(G) to denote the automaton
constructed by replacing all transitions labelled by an unobservable
event with ε and determinized, so that Pi(G) recognizes the language
Pi(L(G)).

7



2 Preliminaries

Let CD be the set of supervisory control decisions. Now supervisors can
be prescribed by fi : Pi(L(G)) × Σi,c → CD for all fi ∈ N . Specifying
supervisors taking arguments from Pi(L(G)) instead of L(G) encodes
requirements traditionally referred to as feasibility and validity, i.e.,
a supervisor should behave consistently for two strings s, s′ such that
Pi(s) = Pi(s

′). We focus only on FSA-based supervisors. That is, a
supervisor fi can be realized as a Moore machine (Si, f

′
i) such that

fi(s, σ) = f ′
i(δi(qi,0, s), σ), where Si is an FSA (Σ, Qi, δi, qi,0), and f ′

i :
Qi × Σi,c → CD. We will refer to f ′

i simply as fi when convenient.

For each controllable event σ, let cdNσ denote the collection of control
decisions issued by supervisors i ∈ Nσ, hence cdNσ has exactly |Nσ|
elements. Let CDNσ be the collection of all such cdNσ ’s. Let FD =
{ enable, disable } be the set of fused decisions. Let fσ : CDNσ → FD
be the fusion functions chosen separately for each σ ∈ Σc, and the
joint supervision fN : L(G) × Σc → FD be defined as fN (s, σ) =
fσ({ fi(Pi(s), σ) }i∈Nσ). Consequently, only decisions issued by supervi-
sors i ∈ Nσ are fused, and decisions of supervisors not controlling the
event σ are ignored.

The closed-loop behaviour of the plant with the joint supervision im-
posed is denoted as defined L(fN/G), and defined inductively as the
smallest set such that:

• ε ∈ L(fN/G)

• s ∈ L(fN/G) ∧ sσ ∈ L(G) ∧ σ ∈ Σuc ⇒ sσ ∈ L(fN/G)

• s ∈ L(fN/G) ∧ sσ ∈ L(G) ∧ σ ∈ Σc ∧ fN (s, σ) = enable ⇒ sσ ∈
L(fN/G)

The second bullet point in the definition of closed-loop behaviour cap-
tures the requirement that a physically possible event that is not control-
lable by any supervisor must be allowed to occur under supervision. The
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2A Discrete-Event Systems

third bullet point says that a physically possible event that is controllable
and for which the fused decision is enable must be allowed to occur
under supervision.

Fig. 2.1 illustrates the architecture defined above, which is adapted from
Fig. 2 by Yoo and Lafortune [YL04] with entities labelled according to
our symbolism.

Figure 2.1: Architecture of Decentralized Control of DES. The control-
lable events are σc,1, . . . , σc,m.

Whereas the fusion function f can be seen as an n-ary operation on
supervisory control decisions CD, there is no operation over the fused
decision set FD, since elements in this set are to be interpreted as fused
decisions and should be regarded as final.

9



2 Preliminaries

In the studies of decentralized problems, it is customary to identify a
fusion rule as an architecture.

In particular, even though for the architectures with binary control
decisions, it happens to be the case that |CD| = |FD|, and by choosing
CD = FD = {0,1} (the Boolean values), where 0 (resp., 1) stands for
disable (resp., enable), the fusion rule can be conveniently described
as Boolean conjunction/disjunction1, as Rudie and Wonham [RW92]
and Prosser, Kam, and Kwatny [PKK97] did, we refrain from doing so to
avoid conflating the de facto different sets of binary control decisions. As
we will reveal, with an epistemic approach, a control decision 0 issued
in a conjunctive architecture has a different meaning from the same
decision issued in a disjunctive architecture; and a similar observation
can be made for the other control decision 1.

The sets CD and FD being disjoint also simplifies discussion: we can
now refer to an element of either set without explicitly stating from
which set it comes. We also refer to a certain element of either set simply
as a decision when no confusion would arise.

Remark 2A1.2
Whereas the set CD determines the number of distinct control decisions
available to the supervisors, what those decisions mean— their seman-
tics— is given by the fusion rule f . Although the symbols we choose
for control decisions may be formally meaningless, we will still choose
them with the intended fusion rule in mind.

Constructing multiple supervisors jointly restricting a plant’s behaviours
will be called the Decentralized Supervisory Control and Observation
Problem (DSCOP). We will use the term “condition” (without qualifica-

1Perhaps under the influence of Prosser, Kam, and Kwatny [PKK97], the work of Takai
and Ushio [TU01], which precedes Takai, Kumar, and Ushio [TKU05], reverses
the meaning of 0 and 1. Hence their OR (resp., AND) rule corresponds to our
conjunctive (resp., disjunctive) rule. We follow the more common convention here.

10



2A Discrete-Event Systems

tion) to refer to the necessary and sufficient condition needed to solve
DSCOP.

For the sake of comparison, we will use the following generic definition
of DSCOP as a common ground for subsequent discussions.

Problem 2A1.3 (Decentralized Supervisory Control and Observation
Problem, DSCOP)
Given an automaton G which specifies the plant behaviour as the
prefix-closed language L(G), an automaton E which specifies the le-
gal behaviour as the prefix-closed language L(E), n pairs of control-
lable/observable event sets, choose an appropriate set of control deci-
sions CD, and a fusion rule f , and synthesize a set N of supervisors,
such that L(fN/G) = L(E).

We arrange E to be a subautomaton ofG as we will need this assumption
to construct the structure relevant to the interpretation of our epistemic
expressions

We usually study the condition for a class of DSCOP for CD and f that
are fixed a priori. See also Rmk. 2A1.2. In particular, CD and f should
be independent of any specific G and E. We have to emphasize that in
practice one is certainly free to choose whatever CD and f necessary to
solve the problem at hand. Fixing CD and f allows us to classify pairs
of G and E according to the CD and f sufficient for the decentralized
control problem to be solvable, and thus allows comparison among pairs
of CD and f .

The problem solvability condition of an architecture is usually called the
co-observability condition of that architecture. Sometimes more specific
names have been given when multiples architectures are being studied
together.

11



2 Preliminaries

2B Epistemic Logic

Ricker and Rudie [RR00; RR07] observed that reasoning about the
decision-making of decentralized supervisors could be facilitated using
formal reasoning about knowledge, via epistemic logic. Although formal
conditions for solving DSCOP can be described using conditions on
strings in languages, and hence do not require a formal logic description,
epistemic logic provides a natural modelling paradigm that parallels
natural languages, thus giving better intuition into the reasoning behind
the decisions that supervisors make. Specifically, the epistemic operator
in the language expresses concepts such as “agent i knows a certain event
must be disabled”. Discussing a supervisor with such anthropomorphic
phrases puts oneself in the perspective of the supervisor and reveals
what “knowledge” the agent must have to make a decision.

Epistemic logic as used in distributed computing problems was first
presented by Halpern and Moses [HM90]. See Fagin et al. [Fag+04] for
more details. We provide in the remainder of this section the concepts
from epistemic logic needed to understand our work.

Definition 2B.1
For a fixed set V of variables, where v denotes some element of V, and
a fixed finite set N of agents, where i denotes some element of N , the
set of epistemic modal formulae is defined inductively by the following
grammar:

S, T ::= (v) propositional variable v
| (¬S) negation of S
| (S ∧ T ) conjunction of S, T
| (KiS) agent i knows S

Definition 2B.2
It is conventional to define other connectives from the primitive ones
above:

12



2B Epistemic Logic

• (α ∨ β) =df ¬(¬α ∧ ¬ β),

• (α ⇒ β) =df (¬α ∨ β)

Where convenient, we use the connectives defined above to express
ideas, but when reasoning about epistemic formulae, we assume that
defined connectives of Defn. 2B.2 have all been syntactically expanded,
so we only have to deal with primitive ones of Defn. 2B.1.

We omit parentheses according to the following precedence convention:
unary operators ¬, Ki bind tightest, then ∧,∨,⇒.

When an expression S is short enough, we sometimes write ¬S as S for
compactness.

The semantics of epistemic formulae are given through the use of a
structure called a Kripke structure.

Definition 2B.3
For some V and N , a Kripke structure, or simply a frame I is

(W,π, {∼i }i∈N )

where

• W is a finite set of possible worlds, or states 2

• π : W × V → { true, false } evaluates each propositional variable
in V at each possible world in W to either true, or false.

• For each i ∈ N , ∼i ⊆ W ×W is the accessibility relation over
possible worlds, and we say world w′ is considered by agent i as
an epistemic alternative if w′ ∼i w.

2The term “states” should cause no confusion in this context, since the worlds in the
frames we construct in this work happen to be states of some FSA.
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Whereas the accessibility relations are commonly required to be equiv-
alence relations over W , a formal construction we will present uses
relations that are not reflexive, and are thus partial equivalence rela-
tions. Hence we denote accessibility relations as ∼, and reserve ≃ for
discussions in which the relations are indeed equivalence relations. Note
as Ricker and Rudie [RR07] do not distinguish these cases, they used ∼
for the latter.

While, as we have already signified, the language of epistemic logic
gives intuitive understanding of how agents reason about uncertainty
and choose control decisions accordingly, we make no philosophical
claim over what knowledge is. That is, we use epistemic logic purely
as a formal instrument, to encapsulate complexity of expressions oth-
erwise given rise to by using predicate logic, which is commonly used
in traditional approaches toward supervisory control of DES, such as
Rudie and Wonham [RW92] and Yoo and Lafortune [YL04].

In our formalism, the propositional connectives (the second and third
items in Defn. 2B.4 below) are to be understood as usual. The semantics
of the epistemic operator (the last item in Defn. 2B.4) reflect that, upon
observing a sequence of events generated by the plant, a supervisor can
only know something (i.e., be certain that it is true), if it is always true
after any sequence (generated by the plant) that looks the same to the
supervisor as the sequence of events it has observed.

To reflect the discussion above, we thus adopt the following formal
definition of the semantics of epistemic formulae as the relation |= of
pairs of Kripke structures and worlds, and epistemic modal formulae,
given inductively over the structure of the formulae.

Definition 2B.4
• (I, w) |= v iff π(w, v) = true

• (I, w) |= ¬S iff it is not the case that (I, w) |= S

14
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• (I, w) |= S ∧ T iff (I, w) |= S and (I, w) |= T

• (I, w) |= KiS iff for all w′ ∈ W such that w′ ∼i w, (I, w′) |= S.

By construction, either (I, w) |= S or not, so we have either (I, w) |= S
or (I, w) |= ¬S, i.e., one and only one of a formula and its negation is
satisfied. Moreover, it is decidable. Hence we can inductively extend
π from propositional variables to epistemic formulae, subject to the
interpretation I, and regard the relation |= as the relation satisfying
(I, w) |= S ⇔ πI(S,w) = true. Henceforth when talking about the
semantic of formulae against interpretations, we also call formulae as
expressions, because they evaluate.

Often, throughout a discussion, all epistemic expressions are evaluated
against the same pair of I, w. In those cases, to avoid repeatedly writing
(I, w) |= ·, we tend to simply say S in place of (I, w) |= S.

2B1 Epistemic Logic in DSCOP

In this subsection, we discuss how Kripke structures are constructed
to express DSCOP problems. These Kripke structures will be used
to interpret a number of epistemic expressions, where an expression
being interpreted as truth corresponds to a co-observability condition
holding. The epistemic expressions will then give denotation to the
control decisions and fusion rules. This approach is adapted from Ricker
and Rudie [RR07] with some necessary modifications.

Consider a plant G, a subautomaton E of G specifying the legal be-
haviour, n pairs of sets of controllable/observable events. Construct
Gobs

i = Pi(G) for each i, where it can also be interpreted Qobs
i =

{Σi,uo-closure of q | q ∈ Q }. This is agent i’s perception of the plant
under partial observation, i.e., the agent cannot distinguish G and Gobs

i
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by only observing sequences of events generated by these two FSA.

Next we construct a composite structure that will allow us to keep track
of plant behaviour and each supervisor’s view of the corresponding plant
behaviour. We do this through the construction G′ = G×Gobs

1 × · · · ×
Gobs

n = (Σ, Q′, δ′, q′0), where Q′ ⊆ Q×Qobs
1 ×· · ·×Qobs

n ⊆ Q×PQ×· · ·×
PQ and PQ is the powerset of Q, δ′ is component-wise application of
δG and δobsi for i ∈ N , q′0 = (q0, q

obs
0,1 , . . . , q

obs
0,n) where qobs0,i ∈ Qobs

i and thus
qobs0,i ⊆ Q for i ∈ N .

Our composite structure G′ generates the same language as G does,
however the Cartesian product of states forming Q′ allows us to track
more information than that is available by simply tracking the sequence
of states in Q visited by some sequence of events in the plant language.
Namely, (q, qobs1 , . . . , qobsn ) ∈ Q′ records not only the current state q of G,
but also each agent’s best estimation qobsi of the set of states the plant
could possibly be at based on agent i’s observation, for each i ∈ N ,
which is to be expected since the actual plant state should always be a
state that any observer thinks the plant could be in.

Now we are ready to construct the Kripke structure against which the
expressions of the various co-observability conditions are interpreted.

We start by letting W = Q′. To avoid multiple arguments with both
subscripts and superscripts, we will write (we, w1, . . . , wn) for an element
of W instead of (q, qobs1 , . . . , qobsn ),

Each of the two Kripke structures we are about to discuss is constructed
with one of the following two kinds of accessibility relations.

The accessibility relations ≃i is constructed such that w ≃i w
′ whenever

wi = w′
i. The accessibility relations ≃i are clearly equivalence relations.

Hence denote {w′ ∈ W | w′ ≃i w } as [w]≃i
, or simply [w]i. This

coincides with the construction by Ricker and Rudie [RR07].
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The other kind of accessibility relations ∼i is constructed such that
w ∼i w

′ whenever we ∈ QE ∧ w′
e ∈ QE ∧ wi = w′

i. Particularly note that
∼i is an equivalence relation on {w ∈ W | we ∈ QE }, and for all w such
that we ̸∈ QE, w has no referent nor relatum (participating ∼i). Hence,
the relations ∼i are partial equivalence relations. It is reasonable to
consider the equivalence class [w]∼i

, or simply, [w]i, whenever we ∈ QE.
Only with an abuse of notation, let [w]i = ∅ for we ̸∈ QE. Informally, one
may interpret [w]i as containing exactly the worlds that are epistemic
alternatives to w as perceived by agent i.

The collection of all equivalence classes induced by ≃i (∼i) is denoted
as ker ≃i (ker ∼i).

We need the following atomic propositions, taken from [RR07], to
capture the presence/absence of transitions of an event σ. Hence we let
V =

⋃
σ∈Σ{σG, σE }, and define

π(w, σG) =

{
true δG(w, σ)!

false otherwise

π(w, σE) =

{
true δE(w, σ)!

false otherwise

The intended meaning of π(w, σG) = true is that σ can physically
occur at state w, as specified by G; whereas π(w, σE) = true indi-
cates that σ is legal and should be allowed to happen. It follows that
π(w, σE) = true ⇒ π(w, σG) = true, which reflects the fact that E is a
subautomaton of G.

Finally, let the Kripke structures be I = (W,π, {≃i }i∈N ) and I =
(W,π, {∼i }i∈N ).

Technically, the constructed Kripke structures I and I are parameter-
ized over certain G, {Pi }i∈N , and E. However, our discussion will
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not simultaneously concern multiple sets of these entities, but assume
an indefinite one, hence we write simply I and I, rather than, say,
I(G,P1, · · · , Pn, E), for the Kripke structure parameterized over that
indefinite, but specific set of arguments.

The difference between the two kinds of Kripke structures is as follows.
Since by construction we have ∼i ⊆ ≃i, hence the condition I |= Ki(ϕ)
is strictly stronger than the condition I |= Ki(ϕ).
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3 Epistemic Interpretations of
Decentralized Discrete-Event
System Problems

This chapter presents epistemic characterizations to co-observability
conditions in decentralized supervisory control of discrete-event systems.
The logical characterizations provide more intuitive interpretations of
the various co-observability conditions, and make immediately apparent
the relations between the conditions. Closures under set union of some
of the conditions are also discussed.

3A Introduction

Different architectures have been explored in the literature for decen-
tralized supervisory control. Since the inference architecture subsumes
other architectures— conjunctive architecture [RW92], disjunctive archi-
tecture [PKK97],and other variations [TKU05]— we claimed in the ear-
lier work [RR23] that, by simply removing certain lines in our epistemic
expression of inference-observability, which corresponds to removing
certain control decisions, the conditions for each of these subsumed
architectures can also be interpreted epistemically, due to the line-by-
line coupling in our expressions. In this chapter we provide such results.
Consequently, although relations between the various co-observability
conditions were known before (e.g., Takai, Kumar, and Ushio [TKU05]),
proving them is not only cumbersome, but also had to be done for each
implication individually. In contrast, once each condition is cast as a
logic expression, the relationships are immediately apparent.
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Moreover, perhaps not satisfied by the absence of desirable algebraic
properties— closure under set union/intersection— of the various co-
observability conditions, Takai, Kumar, and Ushio [TKU05] provided
for each a stronger version to restore the desirable properties. Since
these stronger versions are obtained with an algebraic approach, it is
not intuitive how much “stronger” these strong versions are relative
to the original ones. This chapter provides insight with an epistemic
perspective.

3B Co-observability Conditions and Their
Strong Versions

The earliest work by Rudie and Wonham [RW92] (and similarly by
Cieslak et al. [Cie+88]) on decentralized control problems considered
the architecture where the binary set of control decisions are expressed
as Boolean values and the fusion rule is taken to be the Boolean conjunc-
tion. The condition for the class of problems to be solvable is originally
called by Rudie and Wonham [RW92] simply co-observability. Later
when multiple architectures were being considered simultaneously, Yoo
and Lafortune [YL02] called such architecture Conjunctive and Permis-
sive (C&P) architecture and changed the name of its condition to C&P
co-observability.

Prosser, Kam, and Kwatny [PKK97] showed that, when the fusion rule is
taken to be the Boolean disjunction, the condition of the problem differs
from that of C&P co-observability. Yoo and Lafortune [YL02] called this
architecture Disjunctive and Anti-permissive (D&A) architecture, and also
called the condition of the D&A architecture, given by Prosser, Kam, and
Kwatny [PKK97] as D&A co-observability.

Further, Yoo and Lafortune [YL02] noticed that the fusion rules for
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each event can be chosen separately and independently. This gives the
architecture they originally called general architecture, and the condition
of which is, potentially confusingly, called co-observability. The names
of the architecture and its condition are later renamed to C&P∨D&A ar-
chitecture and C&P∨D&A co-observability, respectively, by Takai, Kumar,
and Ushio [TKU05]. While the control decisions used in the C&P∨D&A
architecture can be encoded as Boolean values, as we will reveal, se-
mantically there are three kinds of decisions, two of which will never be
issued simultaneously when the language is C&P∨D&A co-observable.

While Takai, Kumar, and Ushio [TKU05] has defined a notion of C&P∧D&A
co-observability as the conjunction of C&P co-observability and D&A co-
observability, this notion has received less discussion compared to the
other co-observability conditions. Particularly, Takai, Kumar, and Ushio
[TKU05] did not provide a corresponding C&P∧D&A architecture and
how a DSCOP problem is solved under such an architecture. More
specifically, we might ask “what would be the fusion rule of (and control
decisions available to) the C&P∧D&A architecture?”

On the other hand, the existence of a condition for each of the archi-
tectures indicates that a given DSCOP is not always solvable. In such
a case one may be interested to find instead a sublanguage L′ ⊆ L(E)
such that L(fN/G) = L′. Since an optimal solution does not necessarily
exist, it is then interesting to give upper/lower bounds. This has led to
the discussion of the “strong” versions of the various co-observability
conditions [TKU05]. These strong versions are obtained by pure algebra
and hence offer little intuition of how strong they are.
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3C Epistemic Expressions of decentralized
control conditions

This section recalls decentralized control conditions by Rudie and Won-
ham [RW92], Prosser, Kam, and Kwatny [PKK97], Yoo and Lafortune
[YL02], and Takai, Kumar, and Ushio [TKU05]. Before proceeding to
deriving epistemic expressions for each of the conditions, we provide
some informal descriptions.

Both the conjunctive architecture [RW92] and the disjunctive architec-
ture [PKK97] are traditionally described as using two control decisions,
enable and disable, conveniently denoted as Boolean values 1 and 0.
The supervisors subscribe to the following strategy:

In the conjunctive architecture, the fusion rule resolves conflict by the
fact that 0 ∧ 1 = 0, i.e., in case of conflict, 0 takes precedence over 1.
Hence, the supervisors’ strategy is to issue 0 when determined to disable
an event, and issue 1 when uncertain and expect the best. Hence from
each supervisor’s perspective, this strategy is permissive. Due to this
perspective, the conjunctive architecture was called the conjunctive and
permissive (C&P) architecture.

Dually, in the disjunctive architecture, the fusion rule resolves conflict by
the fact that 0∨1 = 1, i.e., in case of conflict, 1 takes precedence over 0.
Hence, the supervisors’ strategy is to issue 1 when determined to enable
an event, and issue 0 when uncertain and expect the best. Hence from
each supervisor’s perspective, this strategy is anti-permissive. Due to this
perspective, the disjunctive architecture has been called the disjunctive
and anti-permissive (D&A) architecture.

From now on, we will use the shorter terms C&P and D&A instead of
conjunctive and disjunctive.
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The remaining architectures can be thought as a combination of the con-
junctive architecture and disjunctive architectures. The interpretations
are more involved, hence we postpone them until all architectures have
been cast into a uniform description (which uses epistemic logic).

We now proceed to derive epistemic expressions for the various co-
observability conditions and related conditions. As it is the point of this
chapter that epistemic expressions are closer to human language and
are thus easier to interpret, we refrain from explaining the conditions
produced by the original sources and reproduced here. Those conditions
are typically expressed in terms of strings and languages, in contrast
to the epistemic logic expressions that we will give. Indeed, while the
verbal explanations of the language-based expressions can often be
found in these original sources, the explanations provided can be seen
as an informal attempt to interpret the expressions epistemically.

3C1 C&P co-observability

To obtain an epistemic expression of C&P co-observability, we begin
from the following standard definition of C&P co-observability from
Rudie and Wonham [RW92]:

∀ s, { si }i∈N .[∧
i∈N

Pi(s) = Pi(si)

]
⇒ ∀σ ∈ Σc .

∨
i∈Nσ

[
siσ ∈ L(E) ∧ s ∈ L(E) ∧ sσ ∈ L(G)
⇒ sσ ∈ L(E)

] (3.1)

For our later convenience, we extract the quantification ∀σ ∈ Σc out-
wards. We need the logic identity [P ⇒ ∀x. Q(x)] ⇔ [∀x. P ⇒ Q(x)],
where x does not occur free in P , and the commutativity of universal
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quantifications (under the restriction of no free occurrence). So we have
equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[ ∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒
∨
i∈Nσ

[
siσ ∈ L(E) ∧ s ∈ L(E) ∧ sσ ∈ L(G)
⇒ sσ ∈ L(E)

]

Notice we have also quantified all i’s over Nσ instead of N , since for
i ∈ N \ Nσ the statement is vacuously satisfied as the consequent of
(3.1) is quantified only over i ∈ Nσ.

Since i does not occur freely in s ∈ L(E) ∧ sσ ∈ L(G), we proceed to
extract the term outwards. Using the logic identity

∨
x [P ⇒ Q(x)] ⇔

[P ⇒
∨

xQ(x)], where x does not occur freely in P , together with curry-
ing and commutativity, we have equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[ ∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ s ∈ L(E) ∧ sσ ∈ L(G)

⇒
∨
i∈Nσ

[
siσ ∈ L(E)
⇒ sσ ∈ L(E)

]
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By applying modus tollens, we have equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[ ∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ s ∈ L(E) ∧ sσ ∈ L(G)

⇒
∨
i∈Nσ

[
sσ ̸∈ L(E)
⇒ ¬(siσ ∈ L(E))

]

Notice that we wrote ¬(siσ ∈ L(E)) instead of siσ ̸∈ L(E) so that
further on in our development the format will allow us to exploit the
fact that siσ ∈ L(E) implies siσ ∈ L(G).

Again, we have a term sσ ̸∈ L(E) in which i does not occur free, so we
extract it outwards and have equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[ ∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ s ∈ L(E) ∧ sσ ∈ L(G) ∧ sσ ̸∈ L(E)

⇒
∨
i∈Nσ

¬(siσ ∈ L(E))

Since L(E) is prefix-closed and L(E) ⊆ L(G), the statement siσ ∈ L(E)
is equivalent to si ∈ L(E) ∧ siσ ∈ L(G) ∧ siσ ∈ L(E). Hence we have
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equivalently

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .[ ∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ s ∈ L(E) ∧ sσ ∈ L(G) ∧ sσ ̸∈ L(E)

⇒
∨
i∈Nσ

[si ̸∈ L(E) ∨ siσ ̸∈ L(G) ∨ siσ ̸∈ L(E)]

We then extract s ∈ L(E) and si ∈ L(E) outwards. For si ∈ L(E),
since i occurs freely in it, we use the logic identity [

∨
x(P (x) ∨Q(x))] ⇔

[
∨

x P (x) ∨
∨

xQ(x)] ⇔ [
∧

x ¬P (x) ⇒
∨

xQ(x)], and hence have equiva-
lently

∀σ ∈ Σc . ∀ s ∈ L(E), { si ∈ L(E) }i∈Nσ .[ ∧
i∈Nσ

Pi(s) = Pi(si)

]
⇒ sσ ∈ L(G) ∧ sσ ̸∈ L(E)

⇒
∨
i∈Nσ

[
siσ ∈ L(G)
⇒ siσ ̸∈ L(E)

]
(3.2)

We can observe that if s, si ∈ L(E), there must be w,w′ ∈ Q′ such that
we, w

′
e ∈ QE and δ′(q′0, s) = w, δ′(q′0, si) = w′. Also, if Pi(s) = Pi(si) and

s, si ∈ L(E), must have w′ ∼i w. The reverse directions of the two
implications are reasoned similarly. Hence expression (3.2) is equivalent
to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

[(I, w) |= σG ∧ ¬σE]

⇒
∨
i∈Nσ

∀w′ ∼i w. [(I, w
′) |= σG ⇒ ¬σE]

28



3C Epistemic Expressions of decentralized control conditions

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σG ∨ ¬σE)

By σE ⇒ σG the expression above can be equivalently simplified to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)
(3.3)

which is an epistemic expression of C&P co-observability.

With an epistemic expression, we interpret C&P co-observability as
follows: The expression (3.3) says, after a legal sequence s, for an event
σ, if (I, w) |= (σG ∧ ¬σE) (i.e., not only is σ possible to happen, but it is
also illegal and hence must be disabled), then a supervisor i controlling
σ can correctly disable it by knowing that disabling σ does not violate
the control requirement. If none of the supervisors disables σ, then
either σ cannot happen after s (signified by ¬σG), or if it can happen, it
must be legal (signified by σE), and hence the fused decision of σ can
be defaulted to enable.

Specifically, in the conjunctive architecture, the control decision 1 does
not actively enable an event. It merely indicates that a supervisor issuing
such a decision cannot confidently disable the event and abstains from
voting. This asymmetry between the two control decisions 0 and 1
corresponds to the property of Boolean conjunction that the operation
yields 0 as soon as a 0 operand is present, and it only yields 1 when all
operands are 1.
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Therefore, it is more appropriate to relate the control decisions 0 and 1
to the control decisions off and abstain used in our earlier work [RR23].
We will formally define the semantics (through the fusion rule) of these
two control decisions in Section 3C6.

Readers familiar with the work of Ricker and Rudie [RR00] may notice
a similarity between (3.3) and the expression of Kripke-observability
discussed by them. We now proceed to discuss their relationship.

One of the two ways in which Kripke-observability differs from (3.3)
is that (3.3) quantifies over only controllable events, while Kripke-
observability quantifies over all events. We emphasize that this is not
a shortcoming of our expression. We proceed by showing that Kripke-
observability, in a sense, has combined two orthogonal conditions: C&P
co-observability and controllability.

Definition 3C1.1 (Controllability [RW87])
A prefix-closed language L(E) ⊆ L(G) is said to be controllable w.r.t. G
and Σuc whenever

L(E)Σuc ∩ L(G) ⊆ L(E)

or equivalently,

∀σ ∈ Σuc . s ∈ L(E) ∧ sσ ∈ L(G) ⇒ sσ ∈ L(E)

Hence, C&P co-observability together with controllability is equivalent
to

∀σ ∈ Σ . σ ∈ Σc ⇒ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

∧ σ ∈ Σuc ⇒ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= ¬σG ∨ σE
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where the first conjunction is C&P co-observability, and the second
conjunction is controllability.

Since ¬σG ∨ σE is equivalent to (σG ∧ ¬σE) ⇒ ⊥, and for σ ∈ Σuc and
any expression ϕ,

∨
Nσ
ϕ =

∨
∅ ϕ = ⊥, the above is equivalent to

∀σ ∈ Σ . σ ∈ Σc ⇒ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

∧ σ ∈ Σuc ⇒ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

and hence equivalent to

∀σ ∈ Σ . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

This expression differs from that of Kripke-observability [RR00] only
in the Kripke structure used: the Kripke structure used by the same
authors [RR00] is infinite if the plant language contains infinitely many
strings. The later work by Ricker and Rudie [RR07] does use a finite
structure, but does not explicitly state that the approach can be applied
to Kripke-observability.

While one can combine C&P co-observability with controllability into
one single clean and compact expression, we refrain from doing so: as
we will demonstrate with D&A co-observability as an example, control-
lability condition does not usually combine nicely with observability-
related ones.

31



3 Epistemic Interpretations of Decentralized Discrete-Event System
Problems

3C2 D&A co-observability

To obtain an epistemic expression of D&A co-observability, we begin
from the following definition of D&A co-observability [PKK97]:

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .

[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ s ∈ L(E) ∧ sσ ∈ L(E)

⇒
∨
i∈Nσ

[
si ∈ L(E) ∧ siσ ∈ L(G)
⇒ siσ ∈ L(E)

]

Following similar steps as we did in Section 3C1, namely by reordering
logic connectives and converting from language-theoretical expressions
to epistemic-logic expressions, we have equivalently

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ σE
⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)
(3.4)

which is an epistemic expression of D&A co-observability. Notice that we
intentionally refrained from contracting σG ∧ σE into σE for uniformity
with other expressions.

With an epistemic expression, we interpret D&A co-observability as
follows: The expression (3.4) says, after a legal sequence s, for an event
σ, if (I, w) |= σE (i.e. not only is σ possible to happen, but it is also
legal and hence must be enabled), then a supervisor i controlling σ
can correctly enable it by knowing that enabling σ does not violate the
control requirement. If none of the supervisors enable σ, then either σ
cannot happen after s, or if it can happen, it must be illegal, and hence
the fused decision of σ can be defaulted to disable.
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Specifically, in the conjunctive architecture, the control decision 0 does
not actively disable an event. It merely indicates that a supervisor
issuing such a decision cannot confidently enable the event and abstains
from voting. This asymmetry between the two control decisions 0 and 1
corresponds to the property of Boolean disjunction that the operation
yields 1 as soon as a 1 operand is present, and it only yields 0 when all
operands are 0.

Therefore, it is more appropriate to relate the control decisions 0 and 1
to the control decisions abstain and on used in our earlier work [RR23].
We will formally define the semantics (through the fusion rule) of these
two control decisions in Section 3C6.

The case of D&A co-observability demonstrates the reason that we
refrain from combining controllability condition with co-observability
conditions into one expression. On the one hand, unlike the case of C&P
co-observability, there is no compact expression that expresses both D&A
co-observability and controllability. Similar comments can be made to
other co-observability conditions as well. On the other hand, if we begin
from

∀σ ∈ Σ . ∀w ∈ Q′ .

(I, w) |= σE

⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)

we’d then have equivalently

∀σ ∈ Σ . σ ∈ Σc ⇒ . . .

∧ σ ∈ Σuc ⇒∀w ∈ Q′ .

(I, w) |= ¬σE
where the second part can be equivalently expressed as

∀σ ∈ Σuc . s ∈ L(G) ⇒ sσ ̸∈ L(E)

or equivalently
L(G)Σuc ∩ L(E) = ∅
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which expresses that no legal string ends with an uncontrollable event,
or, any string ends with an uncontrollable event is illegal.

3C3 Strong C&P co-observability

To obtain an epistemic expression of strong C&P co-observability, we
begin from the following definition of strong C&P co-observability (Takai
and Ushio [TU01, Proposition 1], Takai, Kumar, and Ushio [TKU05]):

∀σ ∈ Σc . ∀ s, { si }i∈Nσ .

[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ s ∈ L(G) ∧ sσ ∈ L(G)− L(E)

⇒
∨
i∈Nσ

[
si ∈ L(G) ∧ siσ ∈ L(G)
⇒ siσ ̸∈ L(E)

] (3.5)

We can observe that if s, si ∈ L(G), there must be w,w′ ∈ Q′ and
δ′(q′0, s) = w, δ′(q′0, si) = w′. Also, if Pi(s) = Pi(si) and s, si ∈ L(G),
must have w′ ≃i w. The reverse directions of the two implications are
reasoned similarly. Hence the expression (3.5) is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ .

[(I, w) |= σG ∧ ¬σE]

⇒
∨
i∈Nσ

∀w′ ≃i w. [(I, w
′) |= σG ⇒ ¬σE]

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(σG ⇒ ¬σE)
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By σE ⇒ σG the expression above can be equivalently simplified to

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)
(3.6)

Compare the epistemic expression of strong C&P co-observability (3.6)
with that of C&P co-observability (3.3). The only difference is between
the Kripke structures I and I, or more specifically, the accessibility
relations ∼i and ≃i. More is required for an agent to “know” something
under the interpretation I than under the interpretation I.

To formalize this point, the condition

(I, w) |= Ki(ϕ)

which is equivalent to

∀w′ ≃i w. (I, w
′) |= ϕ

and further equivalent to

∀w′ s.t. w′
i = wi . (I, w

′) |= ϕ

which is strictly stronger than

∀w′ s.t. w′
i = wi and w′

e ∈ QE and we ∈ QE .

(I, w′) |= ϕ,

which is equivalent to
(I, w) |= Ki(ϕ).

Informally, strong C&P co-observability requires correct control decisions
even at illegal states. This is more than necessary since illegal states
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are not reachable if the language is C&P co-observable and hence the
desired control requirement can be met. This is exactly how much
stronger strong C&P co-observability is than C&P co-observability.

Since strong C&P co-observability is a stronger version of C&P co-observ-
ability, one may expect that it too can be combined with controllability.
However, this is not the case.

Instead, if we begin from

∀σ ∈ Σ . ∀w ∈ Q′ .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

we’d then have equivalently

∀σ ∈ Σ . σ ∈ Σc ⇒ ∀w ∈ Q′ .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)

∧ σ ∈ Σuc ⇒∀w ∈ Q′ .

(I, w) |= ¬σG ∨ σE
where the first part is strong C&P co-observability.

The second part can be equivalently expressed as

∀σ ∈ Σuc . s ∈ L(G) ∧ sσ ∈ L(G) ⇒ sσ ∈ L(E)

or equivalently
L(G)Σuc ∩ L(G) = L(E)

which requires all strings ending with uncontrollable events to be legal.
The expression appears very similar to controllability, hence we call it
strong controllability. Its relation to controllability is exactly like that
between strong C&P co-observability and C&P co-observability.
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3C4 Strong D&A co-observability

To obtain an epistemic expression of the strong D&A co-observability, we
begin from the following definition of strong D&A co-observability (Takai
and Ushio [TU01, Proposition 1], Takai, Kumar, and Ushio [TKU05]):

∀σ ∈ Σc . ∀ s, { si }i∈N .
[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ s ∈ L(G) ∧ sσ ∈ L(E)

⇒
∨
i∈Nσ

[
si ∈ L(G) ∧ siσ ∈ L(G)
⇒ siσ ∈ L(E)

]

Following similar steps as we did in Section 3C3, namely by reordering
logic connectives and converting from language-theoretical expressions
to epistemic-logic expressions, we have equivalently

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ∧ σE
⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)
(3.7)

In the expression above, it is possible to further restrict the quantification
of w, equivalently, to ∀w ∈ Q′ such that we ∈ QE. However we refrain
from doing so to keep the expression analogous to that of (3.6).

3C5 C&P∧D&A co-observability

Say that the prefix-closed language L(E) is C&P∧D&A co-observable
if L(E) is both C&P co-observable and D&A co-observable [TKU05].
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Hence C&P∧D&A co-observability is equivalent to
∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∨
i∈Nσ

Ki(¬σE)



∧


∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ σE
⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)


which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ⇒


¬σE ⇒

∨
i∈Nσ

Ki(¬σE)

∧ σE ⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)

 (3.8)

The expression (3.8) can be interpreted as follows: if an event is possible,
then if it’s not legal some agent knows it can be disabled (because it
is illegal), and if it’s legal some agent knows it can be enabled (either
because it is legal or cannot even occur).

More compactly, we can write

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ⇒


∨
i∈Nσ

Ki(¬σE)

∨
∨
i∈Nσ

Ki(¬σG ∨ σE)


Finally, we proceed to remove the superfluous σG ⇒ . . . . Consider a
world w ∈ Q′ such that we ∈ QE. Consider also all worlds w′ ∈ [w]i for
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some i. If at some w′ we have σG, then expression in the square brackets
holds at w. If at all w′ we have ¬σG, then have Ki(¬σG) at w, so the
aforementioned expression in square brackets also holds at w. Hence,
we have equivalently

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=
∨
i∈Nσ

Ki(¬σE)

∨
∨
i∈Nσ

Ki(¬σG ∨ σE)

(3.9)

With an epistemic expression, we interpret C&P∧D&A co-observability
as follows: after a legal sequence s, for an event σ, if (I, w) |= σG (i.e.
σ is possible to happen, hence a decision about σ is obliged), then a
supervisor can make a correct decision.

Specifically, in the C&P∧D&A architecture, three control decisions are
used: on, off and abstain, where the fused decision is enable as soon
as a on is issued; disable as soon as a off is issued.

The condition guarantees that at least one on or at least one off is issued,
so it is not the case that all supervisors abstain. And it is physically
impossible that both on and off is issued. Together the fusion rule is
well-defined.

3C6 C&P∨D&A co-observability

We proceed to derive an epistemic logic expression of C&P∨D&A co-
observability as follows:

Definition 3C6.1 (C&P∨D&A co-observability [YL02])
The language L(E) is C&P∨D&A co-observable if there exists a partition
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{Σc,e,Σc,d } of Σc such that L(E) is C&P co-observable with respect to
Σc,e and D&A co-observable with respect to Σc,d

By (3.3) and (3.4), the C&P∨D&A co-observability of the language L(E)
is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= ¬(¬σG ∨ σE)

⇒
∨
i∈Nσ

Ki(¬σE)

∨ ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= ¬(¬σE)

⇒
∨
i∈Nσ

Ki(¬σG ∨ σE)

(3.10)

There are two approaches to derive more tidy expressions facilitat-
ing informal interpretation. The first approach, similar to our earlier
work [RR23], provides a more compact expression and interpretation,
whereas the second approach provides additional insights.

Approach 1

Since whenever ¬(¬σG ∨ σE), it cannot be the case that Ki(¬σG ∨ σE);
and similarly, whenever ¬(¬σE), it cannot be Ki(¬σE). Hence, we can
reach a simpler epistemic expression of C&P∨D&A co-observability.

Definition 3C6.2
Let ϕ+

σ = ¬σG ∨ σE, ϕ−
σ = ¬σE.

The language L(E) is said to be C&P∨D&A co-observable whenever for
any σ ∈ Σc, there is a certain ϕσ ∈ {ϕ+

σ , ϕ
−
σ } for this σ, so that for all
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w ∈ W such that we ∈ QE, we have

(I, w) |=
∨
i∈Nσ

Ki(¬σG ∨ σE) (3.11.1)

∨
∨
i∈Nσ

Ki(¬σE) (3.11.2)

∨ϕσ (3.11.3)

Following Ritsuka and Rudie [RR23] we know that the language L(E)
being C&P∨D&A co-observable is the necessary and sufficient condition
for the DSCOP with the following architecture to be solvable: the set
of control decisions CD is {on,off, abstain }, the fusion rule fσ ∈ { f+,
f− } can be chosen for each σ ∈ Σc, where f+, f− are defined as in
Fig. 3.1. We have to emphasize that even though there are three control
decisions, the two decisions on, off will never be issued for an event σ
simultaneously at a state where the event σ is physically possible (i.e.,
at a state where σG holds).

∃ i ∈ Nσ . cdi = on
⇒ f ∗(s, σ) = enable

• ∃ i ∈ Nσ . cdi = off
⇒ f ∗(s, σ) = disable

•

Otherwise, f+(s, σ) = enable, f−(s, σ) = disable.•

Figure 3.1: Fusion rule, where cdi = fi(Pi(s), σ) for short and f ∗ stands
for both f+ and f−.

A control policy can be synthesized following the epistemic expression.
For each agent i, when the plant is in State q (so by construction agent
i is in State qobsi and q ∈ qobsi ), for every event σ that agent i controls,
agent i should issue control decision on if (3.11.1) holds for i; off if
(3.11.2) holds for i; abstain if otherwise (i.e., only (3.11.3) holds for
i).
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Hence for each event σ and the states such that neither (3.11.1) nor
(3.11.2) holds for some i (i.e., the states in which none of the agents
can make a decision), if either in all these states (3.11.3) holds for ϕ+

σ

(in which case we take the default action enable), or in all these states
(3.11.3) holds for ϕ−

σ (in which case we take the default action disable),
so that the default action is unambiguous, then the control requirement
is achievable.

Approach 2

The second approach provides some additional insights. Specifically,
we realized that in the previous sections, the control decision abstain
has been used not only when a supervisor wishes to assert no influence
over the fused decision. To demonstrate this, we derive alternative
expressions to separate the other semantics from the decision abstain.
After separating the semantics, we will demonstrate that it is without
loss of generality to require that never will all supervisors abstain, and
thus eliminate the need for choosing a default decision for each event.

To simplify the discussion, we first look back to the expression (3.3)
of C&P co-observability. We give yet another expression for C&P co-
observability.
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Theorem 3C6.3
Expression (3.3) is equivalent to the following expression:

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=
∨
i∈Nσ

Ki(¬σE) (3.12.1)

∨
∨
i∈Nσ

Ki(¬σG ∨ σE) (3.12.2)

∨
∨
i∈Nσ

Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE)) (3.12.3)

Before we proceed to a proof, we explain the requirement of j ̸= i:
this requirement is actually redundant in (3.12.3), however, keeping
this requirement creates a line-by-line correspondence between the co-
observability condition (the problem solvability condition) and the con-
trol protocol, as discussed in Ritsuka and Rudie [RR23]. The following
lemma, which is a generalization of Lemma 3.5 and Lemma 3.6 in
Ritsuka and Rudie [RR23], can be readily proven:

Lemma 3C6.4

(I, w) |= Ki(σE ⇒
∨

j∈Nσ

Kj(¬σG ∨ σE)) (3.13)

iff
(I, w) |= Ki(¬σE)

∨Ki(¬σG ∨ σE)

∨Ki(σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE))
(3.14)

The proof proceeds analogously to those of Lemma 3.5 and Lemma 3.6
in Ritsuka and Rudie [RR23].
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Proof. (⇐): We have

(I, w) |= Ki(¬σE)

⇒(I, w) |= Ki(¬σE ∨
∨

j∈Nσ

Kj(¬σG ∨ σE))

⇒(I, w) |= Ki(σE ⇒
∨

j∈Nσ

Kj(¬σG ∨ σE))

Moreover,

(I, w) |= Ki(¬σG ∨ σE)
⇒∀w′ ∈ [w]i . (I, w

′) |= Ki(¬σG ∨ σE)

⇒∀w′ ∈ [w]i . (I, w
′) |=

∨
j∈Nσ

Kj(¬σG ∨ σE)

⇒∀w′ ∈ [w]i . (I, w
′) |= σE ⇒

∨
j∈Nσ

Kj(¬σG ∨ σE)

⇒(I, w) |= Ki(σE ⇒
∨

j∈Nσ

Kj(¬σG ∨ σE))

The last case is straightforward.

(⇒):
Assume (I, w) |= Ki(σE ⇒

∨
j∈Nσ

Ki(¬σG ∨ σE)).
Hence we have equivalently
∀w′ ∈ [w]i . (I, w

′) |= σE ⇒
∨

j∈Nσ
Ki(¬σG ∨ σE).

Hence we have equivalently
∀w′ ∈ [w]i . (I, w

′) |= ¬σE ∨
∨

j∈Nσ
Ki(¬σG ∨ σE). (∗)

Therefore, either
A: we ∈ QE; or
B: we ̸∈ QE.

Case A: we ∈ QE

Hence [w]i is not empty.
We have either

A.1: ∃w′ ∈ [w]i . (I, w
′) |= Ki(¬σG ∨ σE); or
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A.2: ¬∃w′ ∈ [w]i . (I, w
′) |= Ki(¬σG ∨ σE)

// The trick here is to not split the disjunctions in (∗).
Case A.1: ∃w′ ∈ [w]i . (I, w

′) |= Ki(¬σG ∨ σE)
Obtain w′ such that
w′ ∈ [w]i and
(I, w′) |= Ki(¬σG ∨ σE).

Hence ∀w′′ ∈ [w′]i . (I, w
′′) |= Ki(¬σG ∨ σE).

With [w′]i = [w]i,
we have ∀w′′ ∈ [w]i . (I, w

′′) |= Ki(¬σG ∨ σE).
Hence (I, w) |= Ki(¬σG ∨ σE).

Case A.2: ¬∃w′ ∈ [w]i . (I, w
′) |= Ki(¬σG ∨ σE)

Hence ∀w′ ∈ [w]i . (I, w
′) |= ¬Ki(¬σG ∨ σE).

With (∗),
we have ∀w′ ∈ [w]i . (I, w

′) |= ¬σE ∨
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE).

Thus (I, w) |= Ki(¬σE ∨
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE)).

Case B: we ̸∈ QE

Hence [w]i is empty.
Hence ∀w′ ∈ [w]i . (I, w

′) |= ϕ holds vacuously true.
Hence (I, w) |= Ki(ϕ) holds vacuously true.

□

We return now to the proof of Thm. 3C6.3.

Proof (Thm. 3C6.3). Consider an arbitrary event σ ∈ Σc and an arbi-
trary world w ∈ Q′ such that we ∈ QE.

((3.3) ⇒ (3.12)) Suppose that for some i ∈ Nσ, at some w′ ∈ [w]i, it is
the case that Ki(¬σE). Thus we also have Ki(¬σE) (3.12.1) at w.

Suppose that for no i ∈ Nσ, at no world w′ ∈ [w]i, it is the case that
Ki(¬σE). Then at all w′ ∈ [w]i it must be ¬σG∨σE. Thus for any i ∈ Nσ,
we have Ki(¬σG ∨ σE) (3.12.2) at w.
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((3.3) ⇐ (3.12)) Suppose that for some i ∈ Nσ, we have Ki(¬E). Then
(3.3) is automatic.

Suppose that for some i ∈ Nσ, we have Ki(¬σG ∨ σE). Since we ∈ QE,
so w ∈ [w]i, hence we also have ¬σG ∨ σE. Thus expression (3.3) holds.

Suppose that for some i ∈ Nσ, we haveKi(σG∧¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE)).

Since we ∈ QE, so w ∈ [w]i, hence we also have σG∧¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE),

which implies (3.3). □

Notice that all three disjunctions in (3.12) are epistemic formulae, unlike
(3.3) where there is a propositional disjunction. Very informally, (3.12.3)
comes from the fact that whenever the language is C&P co-observable,
all supervisors know it is so. That is, C&P co-observability is equivalent
to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=
∧
i∈Nσ

Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ

Kj(¬σE)) (3.15)

which is a fact that can be used in an alternative proof for Thm. 3C6.3.

We can apply the same technique to the expression (3.4) of D&A co-
observability as well. Together with the expression (3.12), we can derive
an alternative definition of C&P∧D&A co-observability.

Definition 3C6.5 (alternative to Defn. 3C6.2)
Let

ψ+
σ =

∨
i∈Nσ

Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj( ¬σE)) (3.16)

ψ−
σ =

∨
i∈Nσ

Ki( σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE)) (3.17)
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The language L(E) is said to be C&P∨D&A co-observable whenever for
any σ ∈ Σc, there is a certain ψσ ∈ {ψ+

σ , ψ
−
σ } for this σ, so that for all

w ∈ W such that we ∈ QE, we have

(I, w) |=
∨
i∈Nσ

Ki(¬σG ∨ σE) (3.18.1)

∨
∨
i∈Nσ

Ki(¬σE) (3.18.2)

∨ψσ (3.18.3)

What makes (3.12) and Defn. 3C6.5 interesting is that they reveal
two distinct semantics of the control decision abstain used in (3.3)
and Defn. 3C6.2. Specifically, other than indicating a supervisor’s in-
tention to assert no influence over the fused decision, there is a kind of
conditional decision— the name is coined by Yoo and Lafortune [YL04]
— but this analysis shows that conditional decisions exist since the dawn
of decentralized control, when the first decentralized architecture, the
C&P architecture, is studied [RW92].

The conditional decision is associated with higher-order knowledge:
not only can a supervisor introspect its own knowledge, but it can also
rely on the knowledge of other supervisors. Specifically, taking the
expression (3.12.3) and (3.16) as an example, it says that Supervisor
i can “conditionally enable” the event σ, as it knows, if enabling σ is a
mistake, there will be some other Supervisor j to correct its mistake by
disabling σ. Since in this case we would like Supervisor j’s decision to
override that of Supervisor i, Supervisor i’s decision must be “weaker”,
which is to be formally reflected in the fusion rule. Similarly, the
expression (3.17) talks about the use of a “conditionally disable” control
decision. We denote the conditional enable (resp., disable) decision as
weak on (resp., weak off).

Therefore, although historically the C&P architecture is introduced first
[RW90], with the D&A architecture derived as its dual [PKK97] and
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C&P∧D&A architecture and C&P∨D&A derived as Boolean combinations
of the previous two, we propose a different perspective regarding the
four architectures.

Recall what we have interpreted in Section 3C5: in the C&P∧D&A
architecture there are two control decisions on and off dedicated to
express the intent of a supervisor’s certain wish to disable or enable an
event, whereas the third control decision abstain has no role in shaping
the fused decision, as we have demonstrated that, when C&P∧D&A co-
observability holds, never will all supervisors issue the decision abstain
so that at least one of the supervisors will issue either on or off. Notice
how the expression (3.9) corresponds with (3.11.1) and (3.11.2).

In Section 3C1 (resp., Section 3C2), we have seen that in the C&P
(resp., D&A) architecture, only one absolute control decision is explicitly
used: off (resp., on), which is traditionally written as 0 (resp., 1). The
other absolute control decision is in fact not lost, unlike what (3.3)
(resp., (3.4)) seems to be suggesting. We see from (3.12) (resp., a
similar expression we did not explicitly give), that both absolute control
decisions are present, and that the C&P (resp., D&A) architecture can
be obtained by adding a “conditionally enable” (resp., “conditionally
disable”) decision to the C&P∧D&A architecture. What happened in
Section 3C1 (resp., Section 3C2), when we were interpreting the more
compact expressions, is that the absolute control decision on (resp., off)
is “lost”, because its semantics coincide with that of both the “condition-
ally enable” (resp., “conditionally disable”) decision and the “abstain”
decision, in terms of how they shape the fused decision. Hence in the
traditional notation, the decision 1 (resp., 0) plays three distinct roles;
the presentation in Section 3C1 (resp., Section 3C2) instead denotes
this decision as abstain to emphasize its distinction from the other
decision.

To understand more clearly why we can aggregate the three roles into
one control decision, let us coalesce the aforementioned three roles
into the conditional decision instead of into the abstain decision. Then,
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since whenever the event shall be enabled (resp., disabled), no super-
visor would issue the absolute decision off (resp., on), therefore the
conditional decision will not be overridden, hence there is no harm
to use the conditional decision instead of the more explicit absolute
decision. Also, expression (3.12) (resp., a similar expression we did not
explicitly give) says never will all supervisors abstain. Then the “abstain”
decision will always be overridden, by either the conditional decision
or the absolute decision, hence the conditional decision can safely be
conflated with the role to signify “abstaining”.

To conclude briefly, in the C&P (resp., D&A) architecture there are
semantically four distinct control decisions, where three of the decisions
are represented jointly. Hence traditionally the control decisions are
represented as binary values and the fusion rule is taken to be Boolean
operations.

Lastly we see that the C&P∨D&A architecture is obtained by adding
the other conditional decision to either the C&P architecture or the
D&A architecture. Hence, there are semantically five distinct control
decisions. Moreover, the expression (3.18) guarantees never will all
supervisors abstain.

Looking back to the alternative interpretation in Section 3C6, there were
only three control decisions. This is because whenever C&P∨D&A co-
observability is satisfied, the two different kinds of conditional decisions
will never be simultaneously issued, together with the fact that never
will all supervisors abstain, these three decisions were aggregated into
abstain in Section 3C6.

Therefore, we finally see what makes it possible to “default” the decision
for an event when all supervisors abstain in Section 3C6. Very informally,
if the language is C&P∨D&A co-observable, the supervisors knows so,
and they also know to which default an event should be assigned,
therefore, the supervisors can use a suitable conditional decision to
express that knowledge, while reserving the abstain decision specifically
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to when they do not intend to shape the fused decision.

We noticed, with Defn. 3C6.2 and the interpretation of “default” deci-
sions, a “default” has to be chosen a priori for each event; whereas with
Defn. 3C6.5, we have a richer coding space: two conditional decisions.
Then we realized that in the C&P∨D&A architecture for each event one
has to choose only one of the two conditional decisions. Removing the
restriction on the condition decisions leads to a generalized C&P∨D&A
architecture, whose condition is given as

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=
∨
i∈Nσ

Ki(¬σE) (3.19.1)

∨
∨
i∈Nσ

Ki(¬σG ∨ σE) (3.19.2)

∨
∨
i∈Nσ

Ki(σG ∧ ¬σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σE)) (3.19.3)

∨
∨
i∈Nσ

Ki(σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE)) (3.19.4)

For the subsequent discussion, we refer to the architecture as generalized
C&P∨D&A architecture, and its condition generalized C&P∨D&A co-
observability.

It is obvious that each of the four lines of the expression (3.19) corre-
sponds to one distinct control decision, which we call off, on, weak off,
and weak on, with the additional decision abstain1. We would like to
emphasize that the correspondence among lines of the condition de-
scribing the local property of a plant’s state facilitating a feasible control,

1For detailed discussion on the control decisions weak off and weak on, see the
works by Yoo and Lafortune [YL04] and Ricker and Rudie [RR07] and Ritsuka and
Rudie [RR23] and Ritsuka and Rudie [RR21]. Note that Yoo and Lafortune [YL04]
and Ricker and Rudie [RR07] use different names for the control decisions.
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the reasoning of the exact control decision choices of the supervisors,
and the informal interpretation of the semantics of the control decisions.
This correspondence is a major principle followed by the work of Ritsuka
and Rudie [RR23].

This analysis also suggests that the requirement of not-all-abstaining
is superfluous: it can always be achieved by adding higher levels of
inferences 2 using the same technique we demonstrated here. Since
admitting the not-all-abstaining requirement occasionally makes the
discussion simpler, we opt for admitting it on those occasions.

3C7 Local Observability

Definition 3C7.1 (Observability [LW88])
The prefixed language L(E) is observable with respect to Pi and Σi,c

whenever for any s, s′ ∈ L(E) and any σ ∈ Σi,c, we have

Pi(s) = Pi(s
′) ∧ sσ ∈ L(E) ∧ s′σ ∈ L(G) ⇒ s′σ ∈ L(E)

Definition 3C7.2 (Local observability [TKU05])
The prefixed language L(E) is locally observable whenever L(E) is
observable with respect to Pi and Σi,c for all i ∈ N .

Local observability is equivalent to

∀ i ∈ N . ∀σ ∈ Σi,c . ∀ s, s′ ∈ L(E) .

Pi(s) = Pi(s
′) ∧ sσ ∈ L(E) ∧ s′σ ∈ L(G)

⇒ s′σ ∈ L(E)

(3.20)

2The notion of higher levels of inferences is discussed by Kumar and Takai [KT05]. A
visualization and some supplements are presented by Ritsuka and Rudie [RR21],
where the epistemic interpretation is also informally discussed.
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On the one hand, (3.20) is equivalent to

∀σ ∈ Σc . ∀ s ∈ L(E), { si ∈ L(E) }i∈Nσ .

[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ sσ ∈ L(E)

⇒
∧
i∈Nσ

siσ ∈ L(G)

⇒ siσ ∈ L(E)

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ σE
⇒
∧
i∈Nσ

Ki(¬σG ∨ σE)

This is only half the story. On the other hand, by exploiting the symmetry
between s and s′, with a different approach this time, the expression
(3.20) is also equivalent to

∀σ ∈ Σc . ∀ s ∈ L(E), { si ∈ L(E) }i∈Nσ .

[∀ i ∈ Nσ . Pi(s) = Pi(si)]

⇒ sσ ∈ L(G) ∧ sσ ̸∈ L(E)

⇒
∧
i∈Nσ

siσ ̸∈ L(E)

which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ∧ ¬σE
⇒
∧
i∈Nσ

Ki(¬σE)
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Together, we have

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |=

σG ∧ σE
⇒
∧
i∈Nσ

Ki(¬σG ∨ σE)


∧

σG ∧ ¬σE
⇒
∧
i∈Nσ

Ki(¬σE)


which is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ⇒


σE ⇒

∧
i∈Nσ

Ki(¬σG ∨ σE)

∧¬σE ⇒
∧
i∈Nσ

Ki(¬σE)

 (3.21)

or more compactly,

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= σG ⇒


∧
i∈Nσ

Ki(¬σG ∨ σE)

∨
∧
i∈Nσ

Ki(¬σE)

 (3.22)

The epistemic expression suggests immediately that local observability
is stronger than C&P∧D&A co-observability: the latter requires at least
one supervisor capable making the correct decision, while the former
requires every supervisor capable making the correct decision. Another
way is to regard local observability as the condition for the architecture
similar to the C&P∧D&A architecture except the control decision abstain
is removed.
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Similar to the case of C&P∧D&A co-observability, the σG ⇒ . . . is
superfluous and can be removed.

3C8 Strong Local Observability

Definition 3C8.1 (Strong Observability [TKU05])
The prefixed language L(E) is strongly observable with respect to Pi

and Σi,c whenever for any s, s′ ∈ L(G) and any σ ∈ Σi,c, we have

Pi(s) = Pi(s
′) ∧ sσ ∈ L(E) ∧ s′σ ∈ L(G) ⇒ s′σ ∈ L(E)

Definition 3C8.2 (Strong Local Observability [TKU05])
The prefixed language L(E) is strongly locally observable whenever
L(E) is strongly observable with respect to Pi and Σi,c for all i ∈ N .

Following the same strategy of deriving an epistemic of local observabil-
ity, strong local observability is equivalent to

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒


∧
i∈Nσ

Ki(¬σG ∨ σE)

∨
∧
i∈Nσ

Ki(¬σE)

 (3.23)

Again, the difference between strong local observability (3.23) and
local observability (3.22) is at the Kripke structures I and I, or more
specifically, the accessibility relations ∼i and ≃i. More is required for an
agent to “know” something under the interpretation I than under the
interpretation I. The argument is exactly the same as we have made
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in Section 3C3 Informally, strong local observability requires correct
control decision even at illegal states. This is more than necessary since
illegal states are not reachable if the language is locally observable and
hence the desired control requirement can be met. This is exactly how
much stronger strong local observability is than local observability.

A seeming generalization of strong local observability is

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒
∧
i∈Nσ

[
Ki(¬σG ∨ σE)

∨Ki(¬σE)

]
(3.24)

However, this is equivalent to strong local observability, since (I, w) ̸|=
Ki(¬σG ∨ σE) ∧Kj(¬σE).

3C9 Strong C&P∧D&A co-observability

We define a notion of strong C&P∧D&A co-observability, which is to
C&P∧D&A co-observability as strong C&P co-observability is to C&P co-
observability.

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒


∨
i∈Nσ

Ki(¬σG ∨ σE)

∨
∨
i∈Nσ

Ki(¬σE)

 (3.25)

From the epistemic expressions we can infer immediately, that strong
C&P∧D&A co-observability is stronger than C&P∧D&A co-observability,
as intended. Moreover, strong C&P∧D&A co-observability is weaker
than strong local observability, just as C&P∧D&A co-observability is
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weaker than local observability. We therefore appreciate the epistemic
expressions for providing such apparentness.

3C10 Weak Co-normality

Weak co-normality is defined in terms of the following modified projec-
tion function:

Definition 3C10.1 (Modified Projection Function [RW90])
Define the modified projection function P̃i : Σ

∗ → Σ∗
i,oΣ ∪ {ε} as

P̃i(s) =

{
ε, if s = ε

Pi(s
′)σ, if s = s′σ

that is, P̃i behaves like Pi except it does not erase the last event of the
string s, when s is not empty.

Then weak co-normality can be defined as follows:

Definition 3C10.2 (Weak Co-normality [TKU05])
The prefixed language L(E) is weakly co-normal whenever[⋃

i∈N

P̃−1
i P̃i(L(E)) ∩ L(G)

]
⊆ L(E)

Note the inclusion in the other direction trivially holds.

The language L(E) is weakly co-normal iff

∀ s ∈ Σ∗ .
[
s ∈ L(G) ∧ ∃ i ∈ N .

[
s ∈ P̃−1

i P̃i(L(E))
]]

⇒ s ∈ L(E)
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which is equivalent to

∀ s ∈ Σ∗ . ∃ i ∈ N .
[
s ∈ P̃−1

i P̃i(L(E)) ∧ s ∈ L(G)
]
⇒ s ∈ L(E)

Moving the existential quantifier out of the implications, we have equiv-
alently

∀ s ∈ Σ∗ . ∀ i ∈ N . s ∈ P̃−1
i P̃i(L(E)) ∧ s ∈ L(G) ⇒ s ∈ L(E)

which is equivalent to

∀ s ∈ Σ∗ . ∀ i ∈ N .
[
∃ s′ ∈ L(E) . P̃i(s) = P̃i(s

′)
]
∧s ∈ L(G) ⇒ s ∈ L(E)

Moving the existential quantifier out of the implications, we have equiv-
alently

∀ s, s′ ∈ Σ∗ . ∀ i ∈ N . P̃i(s) = P̃i(s
′) ∧ s′ ∈ L(E) ∧ s ∈ L(G) ⇒ s ∈ L(E)

Since for any i it is always the case that P̃−1
i P̃i({ ε }) = { ε }, hence we

only need to consider non-empty strings. Therefore, the expression
above is equivalent to

∀ s, s′Σ∗ . ∀σ ∈ Σ . ∀ i ∈ N .

P̃i(sσ) = P̃i(s
′σ) ∧ s′σ ∈ L(E) ∧ sσ ∈ L(G) ⇒ sσ ∈ L(E)

which is equivalent to

∀ s, s′ ∈ Σ∗ . ∀σ ∈ Σ . ∀ i ∈ N .

Pi(s) = Pi(s
′) ∧ s′σ ∈ L(E) ∧ sσ ∈ L(G) ⇒ sσ ∈ L(E)

(3.26)

In the same way the expression in Defn. 3C8.1 gives rise to the epistemic
expression (3.23) of strong local observability, by noticing how the
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restrictions of the quantifications are relaxed in (3.26) from Defn. 3C8.1,
the expression (3.26) can be written as

∀σ ∈ Σ . ∀w ∈ Q′ .

(I, w) |= σG ⇒


∧
i∈N

Ki(¬σG ∨ σE)

∨
∧
i∈N

Ki(¬σE)

 (3.27)

With this epistemic expression, we thus interpret weak co-normality as
follows: for every event, including even the controllable ones, at any
state, including even the illegal states (which the plant would never
enter should correct control decisions be enforced), every supervisor
must know whether the event can be disabled or enabled, even if that
supervisor does not control that event.

3C11 Summary and Discussion

To better understand the relationships between the various decentral-
ized DES conditions established, we first provide some shorthand for
epistemic formulae. We will then be able to capture the relationships in
a figure.

The following expressions are all implicitly parameterized by an event σ
known from the context.

First, phrases regarding the desired decision of σ:

e = ¬σG ∨ σE σ can be enabled
d = ¬σE σ can be disabled
e = σE σ must be enabled
d = σG ∧ ¬σE σ must be disabled
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Then, define the modal operator “someone knows. . . ”:

Sϕ = ∨i∈NσKiϕ

Define the modal operator “everyone knows. . . ”:

Eϕ = ∧i∈NσKiϕ

With an agent i known from the context, define a variant of the modal op-
erator “someone knows” as “some other one (other than i) knows. . . ”:

Oϕ = ∨j∈Nσ
j ̸=i

Kjϕ

Hence, in a condition the presence of the phrases Se / Ee, Sd / Ed,
S(e ⇒ Oe), S(d ⇒ Od) indicates the availabilities of the control deci-
sions on, off, weak off, weak on, respectively.

With these shorthands, we summarize the epistemic expressions of the
co-observability conditions and related variations in Fig. 3.2.
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∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ S(e ⇒ Oe) ∨ S(d ⇒ Od)

generalized C&P∨D&A co-observability (3.19)

∀σ ∈ Σc . ∃ϕ ∈ { e, d } .
∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ S(ϕ ⇒ Oϕ)

C&P∨D&A co-observability (3.18)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ S(d ⇒ Od)

C&P co-observability (3.12)

∀σ ∈ Σc . ∃ϕσ ∈ { e, d } .
∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ ϕ

C&P∨D&A co-observability (3.11)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= Se ∨ Sd ∨ S(e ⇒ Oe)

D&A co-observability

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= d ⇒ Sd

C&P co-observability∗ (3.3)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= e ⇒ Se

D&A co-observability∗ (3.4)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= e ⇒ Se

∧ d ⇒ Sd

C&P∧D&A co-observability (3.8)

∀σ ∈ Σc . ∀w ∈ Q′ s.t. we ∈ QE .

(I, w) |= e ⇒ Ee

∧ d ⇒ Ed

local observability (3.22)

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= d ⇒ Dd

strong C&P co-observability (3.6)

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= e ⇒ Se

strong D&A co-observability (3.7)

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= e ⇒ Se

∧ d ⇒ Sd

strong C&P∧D&A co-observability (3.25)

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= e ⇒ Ee

∧ d ⇒ Ed

strong local observability (3.23)

∀σ ∈ Σ . ∀w ∈ Q′ .

(I, w) |= e ⇒ Ee

∧ d ⇒ Ed

weak co-normality† (3.27)

Figure 3.2: Lattice of co-observability conditions and related variations. Implications go in the direction of arrows.
Note: all expressions e⇒ ϕ ∧ d⇒ ψ can be contracted into ϕ ∨ ψ (see Section 3C5).
∗: the lack of one of e⇒ Se and d⇒ Sd entails the existence of a conditional decision.
†: the expression is written with i ∈ N instead of i ∈ Nσ, which distinguishes weak co-normality from strong local observability.
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The logical expressions in this chapter are independent of the finite
automaton used to represent the plant, which enabled us to consider
a finite, state-based Kripke structure, as in Ricker and Rudie [RR07].
However, if one wishes to apply a similar technique to other conditions
(such as those with higher-order knowledge), then it would have to be
first ascertained that the conditions are invariant to the plant represen-
tations. If they are not, then one could use a finer, (possibly infinite)
string-based Kripke structure as described by Ricker and Rudie [RR00],
along with corresponding definitions of relations ≃i and ∼i.

3D Discussion on Closure Under Set Union

Takai and Ushio [TU01] showed that strong local observability has the
desirable property of being closed under set union. Through our earlier
discussions in Sections 3C5 and 3C8 (see also Fig. 3.2), we realized that
strong local observability is much stronger than what suffices for the
decentralized problem to be solvable. Hence, we dedicate this section
to the investigation of what makes strong local observability closed
under union, and whether there are extraneous restrictions that can be
removed to derive a weaker condition which is still closed under set
union.

With the epistemic interpretation, we realized that strong local observ-
ability has two constraints in addition to C&P∧D&A co-observability.
One is to require more for an agent to “know” something, through the
use of the interpretation I instead of the interpretation I. The second
is to require that not just at least one, but all supervisors are capable
of making the correct decision. These two constraints are informally
reflected by the words “strong” and “local” respectively. Therefore, it
is interesting to see how removing either one of these two constraints
breaks closure under set union. Namely, we will provide intuitive un-
derstanding of why strong C&P∧D&A co-observability (having only
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“strong”) and local observability (having only “local”) are not closed
under set union.

3D1 Strong C&P∧D&A Co-observability is not Closed
under Set Union

Strong C&P∧D&A co-observability is not closed under set union. To
demonstrate this, we assume that the two languages L(E1) and L(E2)
are strongly C&P∧D&A co-observable, and show that the language
L(E) = L(E1) ∪ L(E2) is not necessarily strongly C&P∧D&A co-observ-
able, by a satisfiability problem. That is, we will inspect the epistemic
expression which expresses the strong C&P∧D&A co-observabilities of
L(E1) and L(E2) and the non- strong C&P∧D&A co-observability of
L(E), and deliberately construct a Kripke structure model of the expres-
sion.

Without loss of generality we assume that E1, E2 have been arranged
to be subautomata of E, and that E1, E2 and E are subautomata of G.
For our purpose, we extend the Kripke structure in the obvious way, so
that, for example, π(w, σE1) = true whenever δE1(w, σ)!. Notice that
[(I, w) |= σE] ⇔ [(I, w) |= σE1 ] ∨ [(I, w) |= σE2 ].

Then by the strong C&P∧D&A co-observabilities of L(E1) and L(E2), we
have

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒
∧

Ek∈{E1,E2 }


∨
i∈Nσ

Ki(¬σG ∨ σEk
)

∨
∨
i∈Nσ

Ki(¬σEk
)

 (3.28)

Consider an event σ ∈ Σc, a world w ∈ Q′, construct the model so that
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3D Discussion on Closure Under Set Union

(I, w) |= σG. Then it is possible to deliberately construct the model so
that only the cases

(I, w) |= Ki(¬σE1) (3.29)

(I, w) |= Kj(¬σE2)

hold, and they hold only for two distinct supervisors i, j ∈ Nσ.

For L(E) to be not strongly C&P∧D&A co-observable, we need that

(I, w) ̸|= Ki( ¬ (σE1 ∨ σE2))

(I, w) ̸|= Ki(σG ⇒(σE1 ∨ σE2))

or equivalently, for some w′, w′′ ∈ [w]i,

(I, w′) |= σE1 ∨ σE2

(I, w′′) |= σG ∧ ¬σE1 ∧ ¬σE2

Therefore, in the presence of (3.29), we need

(I, w′) |= ¬σE1 ∧ σE2

(I, w′′) |= σG∧¬σE1 ∧ ¬σE2

Since σE2 ⇒ σG, so we need

(I, w′) |= σG ∧ ¬σE1 ∧ σE2

(I, w′′) |= σG ∧ ¬σE1 ∧ ¬σE2

That is, we confuse Supervisor i with event σE2 at State we, which is
indeed possible. Similar argument applies for j as well. Therefore, as
long as at State we, there is an event observable to one of i, j but not to
the other, and vice versa, the requirement is satisfiable.
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Using the satisfiability problem as guidance, we can explicitly construct
the following example. Consider two supervisors with observed event
sets Σ1,o = { a }, Σ2,o = { b }, and controlled event sets Σ1,c = Σ2,c = { c }.
Let Fig. 3.3 depict the automaton G′ = G × P1(G) × P2(G). Since G′

and G happen to be isomorphic in this example, we do not draw G
separately. Let E1 mark all states in G except States 1′, 2′ (i.e., all states
whose left side is shaded), and E2 mark all states in G except States
1′, 3′ (i.e., all states whose right side is shaded), so that E marks all
states except State 1′ (i.e., all states which have any shading).

2' 
2, 2' 

1, 1', 2, 2'

1 
1, 1', 3, 3' 
1, 1', 2, 2'

1' 
1, 1', 3, 3' 
1, 1', 2, 2'

2 
2, 2' 

2, 2', 1, 1'

3' 
1, 1', 3, 3' 

3, 3'

3 
1, 1', 3, 3' 

3, 3'

Figure 3.3: The automatonG′ = G×P1(G)×P2(G). A state (qG, q
obs
1 , qobs2 )

is represented in the figure with q, qobs1 , qobs2 stacked vertically
in that order. States are also labelled by their equivalence
classes ker ≃1 (resp., ker ≃2) in the upper left (resp., upper
right) corner.

Since in this example no event may happen at illegal states, hence strong
C&P∧D&A co-observability coincides with C&P∧D&A co-observability.
We can verify that L(E1) and L(E2) are both (strongly) C&P∧D&A co-
observable. However, (strong) C&P∧D&A co-observability of L(E) is
violated at State 1, since neither supervisor knows the correct control
decision for the event c at State 1. This can be seen as follows. Supervisor
1 confuses sequences ε and b (i.e., States 1 and 3, respectively) and the
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former when followed by c is not in E but the latter when followed by
c is, hence Supervisor 1 does not know whether c should be disabled
at State 1. Similarly, Supervisor 2 confuses ε and a (i.e., States 1 and 2,
respectively) and again c is illegal but ac is legal. As a result, Supervisor
2 also does not know whether c should be disabled at State 1. Therefore,
(strong) C&P∧D&A co-observability is not closed under union.

Intuitively, since (strong) C&P∧D&A co-observability does not require
every supervisor to be certain but only some to be, we are able to
confuse some supervisor with one language and all other remaining
supervisors with the other language, so that all supervisors become
confused in the union language. In the example above, at State 1, L(E1)
is intended to confuse Supervisor 1 but not Supervisor 2, and L(E2)
is intended to confuse Supervisor 2 but not Supervisor 1. Moreover,
L(E1) and L(E2) are constructed so their union L(E) does not resolve
confusion for Supervisors 1 and 2 since after the union enough states
are still illegal that both supervisors are confused at State 1.

3D2 Local Observability is not Closed under Set Union

We approach non-closure of local observability similarly as we did for
strong C&P∧D&A co-observability in the previous section.

Since we are dealing with two languages, and I (more specifically, ∼i)
is language-dependent, we instead use the Kripke structure I, and add
the propositions wEk

, so that π(w,wEk
) = true exactly when we ∈ QEk .

Therefore, for propositional formula ϕ involving only σG and σE, for all
w ∈ Q′,

we ∈ QEk ⇒ (I, w) |= Ki(ϕ)

exactly when
(I, w) |= wEk

⇒ Ki(wEk
⇒ ϕ)
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Assuming L(E1) and L(E2) are locally observable, we have

∀σ ∈ Σc . ∀w ∈ Q′ .

∧
Ek∈{E1,E2 }

(I, w) |= wEk
⇒ σG ⇒


∧
i∈Nσ

Ki(wEk
⇒ ¬σG ∨ σEk

)

∨
∧
i∈Nσ

Ki(wEk
⇒ ¬σEk

)



Since we ∈ QE exactly when we ∈ QE1 or we ∈ QE2 , we have (I, w) |= wE

exactly when (I, w) |= wE1 or (I, w) |= wE2. Hence we have

∀σ ∈ Σc . ∀w ∈ Q′ such that we ∈ QE .

(I, w) |= wE ⇒ σG ⇒
∨

Ek∈{E1,E2 }


∧
i∈Nσ

Ki(wEk
⇒ ¬σG ∨ σEk

)

∨
∧
i∈Nσ

Ki(wEk
⇒ ¬σEk

)


(3.30)

Similar to our approach in the previous section, we deliberately construct
the model so that (I, w) |= wE ∧ σG and the only disjunction that holds
is ∧

i∈Nσ

Ki(wE1 ⇒ ¬σE1)

for some i ∈ Nσ. That is, we ensure that we ̸∈ QE2.

Since we desire to show that L(E) is not locally observable, we would
like to construct, for some i ∈ Nσ, some w′ ∈ [w]i, so that

(I, w) |= σG ∧ wE1 ∧ ¬wE2 ∧ ¬σE1 ∧ ¬σE2

(I, w′) |= σG ∧ wE1 ∧ wE2 ∧ ¬σE1 ∧ σE2

which requires, for that specific i, for all w′′ ∈ [w′]i = [w]i, that

(I, w′′) |= wE2 ⇒ σG ⇒ σE2
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Therefore, to make it easier for us, we ensure that w′ is the only world
in [w′]i = [w]i such that (I, w′) |= wE2 ∧ σG.

Since (I, w′) |= σG ∧ wE2 ∧ σE2, it must be that for all w′′ ∈ [w′]i = [w]i,
(I, w′′) |= wE2 ⇒ ¬σG∨σE2 . Specifically, since w ∈ [w]i, (I, w) |= wE2 ⇒
¬σG ∨ σE2 . Again, for convenience, we ensure that at no other world in
[w]i, we have wE2 ⇒ ¬σG ∨ σE2.

To summarize, since we are aiming for a compact example, and since
the epistemic expression permits us to do so, the example is deliber-
ately constructed so that there are only two states in [w]i, for only one
particular i.

Using the satisfiability problem as guidance, we can explicitly construct
the following example. Consider two supervisors with observed event
sets Σ1,o = ∅, Σ2,o = { a }, and controlled event sets Σ1,c = Σ2,c = { a,
c }. Let Fig. 3.4 depict the automaton G′ = G× P1(G)× P2(G). Since
G′ and G happen to be isomorphic in this example, we do not draw
G separately. Let E1 mark States 1, 2 (i.e., all states whose left side is
shaded), and E2 mark States 1, 1′ (i.e., all states whose right side is
shaded), so that E marks all states except State 2′ (i.e., all states which
is somehow shaded).

We can verify that L(E1) and L(E2) are both locally observable. However,
local observability of L(E) is violated at State 2, since Supervisor 1 does
not know the correct control decision for the event c at States 1 and
2. This can be seen as follows. Supervisor 1 confuses sequences ε and
a (i.e., States 1 and 2, respectively) and the former when followed by
c is not in E but the latter when followed by c is, hence Supervisor 1
does not know whether c should be disabled at State 1. Therefore, local
observability is not closed under union.

Intuitively, restricting the quantification of w ∈ Q′ to exclude worlds
such that we is not in, say, QE2, makes the supervisors vulnerable at
states that are otherwise reachable in the union language (since if
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1 
1, 1', 2, 2' 

1, 1'

1' 
1, 1', 2, 2' 

1, 1'

2' 
1, 1', 2, 2' 

2, 2'

2 
1, 1', 2, 2' 

2, 2'

Figure 3.4: The automatonG′ = G×P1(G)×P2(G). A state (qG, q
obs
1 , qobs2 )

is represented in the figure with q, qobs1 , qobs2 stacked vertically
in that order. Note that we label states by their equivalence
classes, ker ∼1,E1 , ker ≃1,E2 ker ∼2,E1 , ker ≃2,E2 in the upper
left, upper right, lower left, lower right corners.

68



3D Discussion on Closure Under Set Union

we ∈ QE1, then we ∈ QE). Notice how, in the example above, State 2 is
not in E2, yet created confusion when brought in to E by E1.

3D3 Strong Local Observability is Closed under Set
Union

Although it has already been proven that strong local observability is
closed under set union [TU02], here we are interested in seeing how we
were able to construct the counterexamples in the previous two sections,
and how strong local observability would prevent us doing so.

Suppose that L(E1) and L(E2) are strongly locally observable, and we
derive

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒
∧

Ek∈{E1,E2 }


∧
i∈Nσ

Ki(¬σG ∨ σEk
)

∨
∧
i∈Nσ

Ki(¬σEk
)

 (3.31)

Compare (3.31) with (3.28) and (3.30). What allowed us to construct
the counterexamples are specific disjunctions in (3.28) and (3.30),
which are changed to conjunctions in (3.31).

3D4 Revisiting Strong C&P∧D&A Co-observability

In Section 3D1 we demonstrated that strong C&P∧D&A co-observability
is not closed under union. That is, given two strongly C&P∧D&A co-ob-
servable languages L(E1) and L(E2), their union L(E) = L(E1) ∪ L(E2)
is not necessarily synthesisable under the C&P∧D&A architecture.
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However, Section 3D1 does not claim that the language L(E) is not syn-
thesisable at all. In fact, since any strongly C&P∧D&A co-observable lan-
guage is also strongly D&A co-observable, and strong D&A co-observabil-
ity is closed under union, it follows that given two strongly C&P∧D&A
co-observable languages L(E1) and L(E2), their union L(E) = L(E1) ∪
L(E2) is synthesisable under the D&A architecture3.

Then it is interesting to ask, given that D&A architecture suffices,
whether it is also necessary; and moreover, what D&A architecture pro-
vides to facilitate the synthesis of the union of two strongly C&P∧D&A
languages.

Assuming strong C&P∧D&A co-observability of two languages L(E1)
and L(E2), we perform a case analysis for expression (3.28).

Case 1: if at w we have Ki(¬σG ∨ σE1) for some i ∈ Nσ, then we can
derive

Ki(¬σG ∨ (σE1 ∨ σE2))

and thus
Ki(¬σG ∨ σE)

Case 2: if at w we have Ki(¬σE1) for some i ∈ Nσ,

Now consider two separate cases.

Case 2.1: if at all w′ ∈ [w]i, whenever σG holds we have either Ki(¬σG∨
σE2) or Ki(¬σE2), then we have two cases:

3This result gives us an inspiration: given two languages L(E1) and L(E2) synthe-
sisable in the architecture A, we should not confine ourselves in synthesizing the
union language L(E) in the architecture A, but instead be willing to look for an al-
ternative architecture B in which we can synthesize L(E). If we let all architectures
be ordered by their strength, we’d then like to ask: does there exist a supremal
architecture?
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Case 2.1.1: if at some w′ ∈ [w]i such that σG holds, we have Ki(¬σG ∨
σE2), then we also have Ki(¬σG ∨ (σE1 ∨ σE2)), that is, Ki(¬σG ∨ σE),
which must hold at w as well.

Case 2.1.2: if at some w′ ∈ [w]i such that σG holds, we have Ki(¬σE2),
then since Ki(¬σE1) holds at w′ as well, we have Ki(¬σE1 ∧ ¬σE2),
that is, Ki(¬(σE1 ∨ σE2)), and hence Ki(¬σE), which must hold at w as
well.

Case 2.2: if at none of the w′ ∈ [w]i such that σG holds, we have
either Ki(¬σG ∨ σE2) or Ki(¬σE2), then by (3.28), we have either
Kj(¬σG ∨ σE2) or Kj(¬σE2) for some j ∈ Nσ, where j must be different
from i. Then consider an arbitrary w′ ∈ [w]i such that σG holds (for
otherwise the result follows vacuously). We have two cases to consider
here.

Case 2.2.1: if at w′ we have Kj(¬σG∨σE2), then with a similar argument
as case 1, we have Kj(¬σG ∨ σE), and hence automatically σE ⇒
Kj(¬σG ∨ σE).

Case 2.2.2: if at w′ we have Kj(¬σE2), then we have ¬σE1 ∧¬σE2 . That
is, ¬(σE1 ∨ σE2), hence, ¬σE. Thus vacuously σE ⇒ Kj(¬σG ∨ σE).

Together, for case 2.2, at any w′ ∈ [w]i we have σE ⇒ Kj(¬σG ∨ σE).
Thus at w we have Ki(σE ⇒ Kj(¬σG ∨ σE)).
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Together, we have

∀σ ∈ Σc . ∀w ∈ Q′ .

(I, w) |= σG ⇒



∨
i∈Nσ

Ki(¬σG ∨ σE)

∨
∨
i∈Nσ

Ki(¬σE)

∨
∨
i∈Nσ

Ki(σE ⇒
∨

j∈Nσ
j ̸=i

Kj(¬σG ∨ σE))


Following an approach similar to how we proved Thm. 3C6.3, we see the
expression above is equivalent to strong D&A co-observability. Hence,
given two languages L(E1) and L(E2), if they are strongly C&P∧D&A co-
observable, then their union L(E) must be strongly D&A co-observable.
That is, the D&A architecture is indispensable to the synthesis of the
union of two strongly C&P∧D&A co-observable languages.

3E Conclusion

This chapter presents epistemic characterizations of co-observability
conditions. Such characterizations provide more intuitive understanding
of these conditions. Closures under set union of some of the conditions
are also discussed, where we provide a systematic approach to find
counterexamples.

References

[Cie+88] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. “Su-
pervisory control of discrete-event processes with partial

72



References

observations”. In: IEEE Transactions on Automatic Control
33.3 (Mar. 1988), pp. 249–260. DOI: 10.1109/9.402. [cit.
on p. 22].

[KT05] R. Kumar and S. Takai. “Inference-based Ambiguity Man-
agement in Decentralized Decision-Making: Decentralized
Control of Discrete Event Systems”. In: Proceedings of the
44th IEEE Conference on Decision and Control. IEEE, 2005.
DOI: 10.1109/CDC.2005.1582701. [cit. on p. 51].

[LW88] F. Lin and W. M. Wonham. “On observability of discrete-
event systems”. In: Information Sciences 44.3 (Apr. 1988),
pp. 173–198. DOI: 10.1016/0020-0255(88)90001-1. [cit.
on p. 51].

[PKK97] J. H. Prosser, M. Kam, and H. G. Kwatny. “Decision fusion
and supervisor synthesis in decentralized discrete-event
systems”. In: Proceedings of the American Control Confer-
ence. IEEE, 1997. DOI: 10.1109/ACC.1997.608978. [cit. on
p. 21. 22. 24. 32. 47].

[RR00] S. L. Ricker and K. Rudie. “Know means no: Incorporating
knowledge into discrete-event control systems”. In: IEEE
Transactions on Automatic Control 45.9 (2000), pp. 1656–
1668. DOI: 10.1109/9.880616. [cit. on p. 30. 31. 61].

[RR07] S. L. Ricker and K. Rudie. “Knowledge Is a Terrible Thing
to Waste: Using Inference in Discrete-Event Control Prob-
lems”. In: IEEE Transactions on Automatic Control 52.3 (Mar.
2007), pp. 428–441. DOI: 10.1109/TAC.2007.892371. [cit.
on p. 31. 50. 61].

[RR21] K. Ritsuka and Karen Rudie. “A Visualization of Inference-
Based Supervisory Control in Discrete-Event Systems”. In:
2021 60th IEEE Conference on Decision and Control (CDC).
IEEE, Dec. 2021. DOI: 10.1109/cdc45484.2021.9683210.
[cit. on p. 50. 51].

73

https://doi.org/10.1109/9.402
https://doi.org/10.1109/CDC.2005.1582701
https://doi.org/10.1016/0020-0255(88)90001-1
https://doi.org/10.1109/ACC.1997.608978
https://doi.org/10.1109/9.880616
https://doi.org/10.1109/TAC.2007.892371
https://doi.org/10.1109/cdc45484.2021.9683210


3 Epistemic Interpretations of Decentralized Discrete-Event System
Problems

[RR23] K. Ritsuka and K. Rudie. Do What You Know: Coupling
Knowledge with Action in Discrete-Event Systems. Submitted
for publication. 2023. [cit. on p. 21. 30. 33. 40. 41. 43. 50.
51].

[RW87] P. J. Ramadge and W. M. Wonham. “Supervisory Control
of a Class of Discrete Event Processes”. In: SIAM Journal on
Control and Optimization 25.1 (Jan. 1987), pp. 206–230.
DOI: 10.1137/0325013. [cit. on p. 30].

[RW90] Karen Rudie and W. Murray Wonham. “The infimal prefix-
closed and observable superlanguange of a given language”.
In: Systems & Control Letters 15.5 (Dec. 1990), pp. 361–
371. DOI: 10.1016/0167-6911(90)90059-4. [cit. on p. 47.
56].

[RW92] K. Rudie and W. M. Wonham. “Think globally, act locally:
decentralized supervisory control”. In: IEEE Transactions
on Automatic Control 37.11 (1992), pp. 1692–1708. DOI:
10.1109/9.173140. [cit. on p. 21. 22. 24. 25. 47].

[TKU05] S. Takai, R. Kumar, and T. Ushio. “Characterization of co-
observable languages and formulas for their super/sublanguages”.
In: IEEE Transactions on Automatic Control 50.4 (Apr. 2005),
pp. 434–447. DOI: 10.1109/tac.2005.844724. [cit. on p.
21. 22. 23. 24. 34. 37. 51. 54. 56].

[TU01] S. Takai and T. Ushio. “Strong co-observability conditions
for decentralized supervisory control of discrete event sys-
tems”. In: Proceedings of the 40th IEEE Conference on De-
cision and Control. IEEE, 2001. DOI: 10.1109/cdc.2001.
980821. [cit. on p. 34. 37. 61].

[TU02] Shigemasa Takai and Toshimitsu Ushio. “A modified nor-
mality condition for decentralized supervisory control of
discrete event systems”. In: Automatica 38.1 (Jan. 2002),
pp. 185–189. DOI: 10.1016/s0005-1098(01)00187-x. [cit.
on p. 69].

74

https://doi.org/10.1137/0325013
https://doi.org/10.1016/0167-6911(90)90059-4
https://doi.org/10.1109/9.173140
https://doi.org/10.1109/tac.2005.844724
https://doi.org/10.1109/cdc.2001.980821
https://doi.org/10.1109/cdc.2001.980821
https://doi.org/10.1016/s0005-1098(01)00187-x


References

[YL02] T.-S. Yoo and Stéphane Lafortune. “A General Architecture
for Decentralized Supervisory Control of Discrete-Event
Systems”. In: Discrete Event Dynamic Systems 12.3 (2002),
pp. 335–377. DOI: 10.1023/a:1015625600613. [cit. on p.
22. 24. 39].

[YL04] T.-S. Yoo and S. Lafortune. “Decentralized Supervisory
Control With Conditional Decisions: Supervisor Existence”.
In: IEEE Transactions on Automatic Control 49.11 (Nov.
2004), pp. 1886–1904. DOI: 10.1109/tac.2004.837595.
[cit. on p. 47. 50].

75

https://doi.org/10.1023/a:1015625600613
https://doi.org/10.1109/tac.2004.837595




4 Do What You Know: Coupling
Knowledge with Action in
Discrete-Event Systems

An epistemic model for decentralized discrete-event systems with non-
binary control is presented. This framework combines existing work
on inference-based control decisions with existing work on formal rea-
soning about knowledge in discrete-event systems. The novelty in the
epistemic formalism is in providing an approach to derive problem
solvability conditions and problem solutions. The derived expressions
directly encapsulate the actions that supervisors must take. This direct
coupling between knowledge and action— in a formalism that mimics
natural language— makes it easier, when the solvability condition fails,
to understand why the condition fails and may aid in determining how
the problem requirements could be revised.

4A Introduction

The emergence of networked systems, including smart vehicles, home
automation, and wearables has increased the need for decentralized
supervisory control: the concept that the control is performed by not
a monolithic, but many individual entities— or agents— separated by
the environment. This chapter focuses on systems modelled as discrete-
event systems (DES).

With control actions performed jointly, a mechanism— called a fusion
rule — is needed to combine control decisions of the agents. Decen-
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tralized control of discrete-event systems under partial observations
began with allowing only Boolean control decisions, and synthesis of
the control policy has been studied when the fusion rule is conjunctive
[Cie+88; RW92], and later other fusion rules are considered [PKK97;
YL02], during which time the fusion rules can be interpreted as sim-
ply an arbiter to resolve conflicting control decisions. Further work
by Yoo and Lafortune [YL04] extended the approach and proposed a
conditional architecture to allow non-binary control decisions with a
more sophisticated fusion rule, so that supervisors can “conditionally”
turn on/off events based on the actions of other supervisors. Yoo and
Lafortune gave necessary and sufficient conditions for the existence of
supervisors [YL04] and a realization of the supervisors [YL05] in the
conditional architecture.

In existing DES research, the conditions for solvability and supervisor
synthesis (when those conditions are satisfied) typically each rely on
constructions that are divorced from each other, and a similar remark
applies also to their respective proofs of correctness. The constructions
appear to be creations ex nihilo, and thus do not provide insight into how
they came to be. Moreover, the formal approach used is almost always
the linguistic approach—where one reasons about strings in the relevant
language representing the DES. Verifying that the solvability conditions
are correct or that the corresponding supervisors solve the problem
requires the reader to come up with their own informal understanding
and interpretation of the conditions/constructions.

With a different formalism, Ricker and Rudie [RR07] gave an epistemic
interpretation to the conditional architecture, where the use of the for-
mal language of epistemic logic enabled one to discuss the supervisory
control in an anthropomorphic manner, which gives a more intuitive
understanding for how control decisions are made. Their epistemic
modelling resolves the drawback of the aforementioned linguistic ap-
proach, namely the meaning of an epistemic expression is immediately
understandable at a glance, so that an expression of the form K1ϕ means
“Supervisor 1 knows ϕ”. The interpretation is only partial as their epis-
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temic expression only captures a weaker architecture. Moreover, in their
epistemic logic formulation, there is a tenuous connection between the
solvability conditions and the actions to be prescribed for supervisors in
a construction that exploits the conditions.

In our earlier work [RR22c], we adapted Ricker and Rudie’s epistemic
formalism to the interpretation of some other commonly known archi-
tectures [Cie+88; RW92; PKK97; YL02]. The result was fruitful, in
giving concise epistemic characterizations to the various architectures
in a way such that each characterization is constituted by a disjunction
of epistemic terms, and each term corresponds to a specific control
decision. As such, the characterizations differ by only the presence
or absence of terms in the disjunction, corresponding to the presence
or absence of control decisions available in an architecture. This was
achieved by reformulating an architecture as a result of observing that
some control decisions plays multiple distinct roles.

This chapter continues our advocacy of applying epistemic formalism
and interpretation as an umbrella framework to the study of decentral-
ized problems. In the present work, we cast a standard and represen-
tative but more complex conditional architecture in epistemic logic as
well. But unlike our earlier work and any other prior works, which
simply present supervisor existence and realization and then establish
their correctness, the novelty of this work is the direct derivation of exis-
tence and realization expressions methodologically from the fusion rule.
Notably, the derivation results in a direct link between the condition
that must hold for a solution to exist and the control protocol that must
be followed when the condition holds. That is, the result has a line-
by-line correspondence between the expressions of the knowledge the
supervisors must possess and the actions they must take.

We have chosen to demonstrate an epistemic characterization only of
the conditional architecture instead of over the more general inference-
based architectures [KT07]. This choice is made as the demonstration
presented here will be sufficiently instructive for how the methodology
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can be routinely applied in extending the result over the inference-based
architectures. Hence here we put emphasis on the process over the
result.

4B Direct Derivation of Supervisor Existence
and Realization for Conditional
Architecture

The conditional architecture of Yoo and Lafortune [YL04] admits five
possible local decisions: “enable”, “disable”, “enable if nobody disables”,
“disable if nobody enables”, and “no decision”. As argued in [RR22c],
to remove the potential confusion of a local “enable” (resp., “disable”)
and a global “enable” (resp., “disable”) decisions, we renamed the
former to on (resp., off). We also give more compact names to the
conditional decisions “enable if nobody disables” and “disable if nobody
enables” and called them weak on and weak off, respectively. Finally,
we consider “no decision” as a decision and hence call it abstain.

We now present the conditional architecture from Yoo and Lafortune
[YL04] as follows. The set of control decisions is CD = {on, off,
weak on, weak off, abstain }. For each σ ∈ Σc, a default action
dft ∈ { enable, disable } must be chosen as part of the solution. By
letting the collection of local decisions for σ after string s be cd =
{ fi(Pi(s), σ) }i∈Nσ for short, the fusion rule fdft

σ for σ is defined as

80



4B Direct Derivation of Supervisor Existence and Realization for
Conditional Architecture

fdft
σ (cd) =



enable if on ∈ cd, off ̸∈ cd

disable if on ̸∈ cd, off ∈ cd

enable if on ̸∈ cd, off ̸∈ cd,

weak on ∈ cd, weak off ̸∈ cd

disable if on ̸∈ cd, off ̸∈ cd,

weak on ̸∈ cd, weak off ∈ cd

dft if on ̸∈ cd, off ̸∈ cd,

weak on ̸∈ cd, weak off ̸∈ cd

(4.1.1)
(4.1.2)
(4.1.3)

(4.1.4)

(4.1.5)

Hence, a solution to the DSCOP, in addition to constructing the super-
visors, also requires that for each σ ∈ Σc one chooses either the fusion
rules f enable or the fusion rule fdisable.

Ideally, we would like to gradually derive the expressions of the problem
solvability condition and derive construction of the supervisors directly
from the fusion rule. However, as the written form of communication
prevents us from doing so, we have to give both of them a priori.
Nonetheless, the development process will still be apparent from the
proof. We stress that the expressions are not creations ex nihilo, but are
obtained from the fusion rule. This process is quite methodologically, as
in every step there is only one sensible choice. Hence our methodology
contrasts with the traditional approaches, which generally involve some
human cleverness.

For ease of understanding and compactness, we define the following
shorthand notation for epistemic formulae.

The following shorthand are defined in terms of σG and σE. We use over-
bar instead of the standard symbol for logical negative in expressions
when it makes it clearer to see at a glance which propositions in a
compound proposition are or are not negated.
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1. σe! := σE = σG∧σE, reads “σ must be enabled to satisfy the control
requirement”;

2. σd! := σG ∧ σE, reads “σ must be disabled to satisfy the control
requirement”;

3. σe := σG ∨ σE = σG ⇒ σE, reads “σ can be enabled without
violating the control requirement” or alternatively, “if σ is even
possible then it ought to be enabled; otherwise, it does not matter”;

4. σd := σE, reads “σ can be disabled without violating the control
requirement”, or alternatively, “if σ is even possible then it ought
to be disabled; otherwise, it does not matter”.

Note that σd could have been defined as σG∨σE to parallel our definition
of σe, but since an event that is not legal is also not possible, σE implies
σG already.

The following expressions are all implicitly parameterized by an event σ
known from the context.

Define the modal operator “someone knows. . . ”:

Sϕ :=
∨
i∈Nσ

Kiϕ

With a supervisor i known from the context, define a variant of the
modal operator “someone knows” as “some other supervisor (other than
i) knows. . . ”:

Oϕ :=
∨

j∈Nσ
j ̸=i

Kiϕ

Finally, we need the following shorthand for some frequently needed
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epistemic expressions.

K0
i σe := Kiσe

K0
i σd := Kiσd

K1
i σe := Ki(σd! ⇒ Oσd)

K1
i σd := Ki(σe! ⇒ Oσe)

Although we plan to derive the solvability condition and a control policy,
it is nonetheless beneficial to first consider a tentative, but tangible pro-
posal. Consider a tentative knowledge-based control policy (Gobs

i ,KP i),
where KP i is defined according to (4.2):

KP i(w, σ) =



on if (I, w) |= K0
i σe ∧K0

i σd

off if (I, w) |= K0
i σe ∧K0

i σd

weak on if (I, w) |= K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

weak off if (I, w) |= K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

abstain otherwise
(4.2.1)

(4.2.2)

(4.2.3)

(4.2.4)
(4.2.5)

This construction appears to be quite natural. Even without formally
deriving it from the fusion rule (4.1), one may still be able to instinc-
tively come up with it, as the epistemic expressions directly capture
what decisions are desirable. The point can be made stronger, if one
temporarily ignores the semantics of the epistemic formulae and focus
on how the form of (4.2) parallels with that of the fusion rule (4.1).

Clearly, the cases defining (4.2) are mutually exclusive and exhaustive.
Intuitively, one can see that the correctness of cases (4.2.1) to (4.2.4) is
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guaranteed by the epistemic formulae, but since the case (4.2.5) does
not involve any epistemic expressions, a condition to ensure its correct-
ness is needed. This condition is our conditional-co-observability.

Definition 4B.1
The Kripke structure I is said to be conditional-co-observable whenever
for each σ ∈ Σc, there is a choice of ∗ from e and d for this σ, such that
for any string s ∈ L(E), where w is the world s leads to, it must be that

(I, w) |=

[ ∧
i∈Nσ

K0
i σd ∧K0

i σe ∧K1
i σd ∧K1

i σe

]
⇒ σ∗,

i.e.,

(I, w) |= S0σe (4.3.1)
∨ S0σd (4.3.2)
∨ S1σe (4.3.3)
∨ S1σd (4.3.4)
∨ σ∗ (4.3.5)

As it will turn out, whenever Defn. 4B.1 holds, a solution to the DSCOP
exists and can be expressed as (4.2). While (4.3) resembles the expres-
sions Ricker and Rudie [RR07] had, it is not ideal as its last disjunction
is not an epistemic formula, and hence not very illuminating, since it
doesn’t describe the knowledge that an agent must possess. Ultimately
we will replace (4.3.5) with an epistemic formula.

The last two ingredients we need before showing that conditional-co-
observable is necessary and sufficient to solve DSCOP are two char-
acterizations of “solving” DSCOP. The first characterization arises by
noticing that the definition of L(fN/G) (Defn. 2A1.1) is such that
L(fN/G) = L(E), i.e., the joint supervision fN solves the DSCOP, iff
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s ∈ L(E) ∧ sσ ∈ L(G) ∧ σ ∈ Σuc

⇒ sσ ∈ L(E) (4.4.1)
s ∈ L(E) ∧ sσ ∈ L(G) ∧ σ ∈ Σc

⇒ fN (s, σ) = enable ⇒ sσ ∈ L(E) (4.4.2)
∧ fN (s, σ) = disable ⇒ sσ ̸∈ L(E) (4.4.3)

Equation (4.4) expresses that a solution to DSCOP must ensure that
uncontrollable events do not lead to illegality (4.4.1), and that if a
controllable event is allowed to happen (4.4.2), it leads to a legal string;
and if it is prevented from happening (4.4.3), it leads to an illegal
string.

On the other hand, we also have that L(fN/G) = L(E) iff

s ∈ L(E) ∧ sσ ∈ L(G) ∧ σ ∈ Σuc

⇒ sσ ∈ L(E) (4.5.1)
s ∈ L(E) ∧ sσ ∈ L(G) ∧ σ ∈ Σc

⇒ sσ ∈ L(E) ⇒ fN (s, σ) = enable (4.5.2)
∧ sσ ̸∈ L(E) ⇒ fN (s, σ) = disable (4.5.3)

Equation (4.5) expresses that a solution to DSCOP must ensure that
uncontrollable events do not lead to illegality (4.5.1), and that if a
controllable event is legal, it is allowed to happen (4.5.2), and if it is
illegal, it is prevented from happening (4.5.3).

We can now proceed to the development of our main result.

Theorem 4B.2
In the conditional architecture, there exists a set N of n supervisors that
solves the DSCOP iff I is controllable and conditional-co-observable.
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Moreover, whenever a solution exists, the knowledge-based control
policy in (4.2) is a solution.

Again, we emphasize that for the sake of the statement, we take (4.2)
and Defn. 4B.1 as given. But we will actually derive them during the
proof.

Informally, for the necessity part of the proof, we will perform a case
analysis on all possible combinations of local control decisions after
a string, i.e., on (4.1). The fused decision will imply some global
properties of the string, i.e., whether it can be followed by a legal/illegal
event, as for this direction, we are assuming the supervisors solve DSCOP.
From the local decisions, we can derive epistemic characterizations of
the supervisors’ knowledge in the following way. By feasibility, we
know that a supervisor has to issue an identical decision for other
strings indistinguishable from the actual string. Then it is possible to
extrapolate the possible global decisions at those strings, and hence their
global properties. The common global properties of all these strings is
then the supervisor’s knowledge. After we exhaust all combinations of
local control decisions, we will obtain the proposed epistemic expression
of conditional-co-observability.

We now provide our formal proof.

Proof.

Conditional-coobservability is necessary (⇒)

For the proof of necessity, we use (4.4) as the characterization of what it
means to solve DSCOP. Condition (4.4.1) directly implies controllability.
What is left is to show that (4.4.2) and (4.4.3) imply conditional-co-
observability.

Suppose there exists such a set N = (f1, . . . , fn) of n supervisors, such
that (4.4.2) and (4.4.3) hold.
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Although the proof would be much easier by showing that if otherwise
conditional-co-observability fails, then a contradiction arises, for our
purpose, we explicitly derive conditional-co-observability as a necessity.

Consider some s ∈ L(E), σ ∈ Σc such that sσ ∈ L(G). Let w be the
world s leads to; since s ∈ L(E), we ∈ QE.

Now we perform a case analysis on the possible combinations of local
decisions, in the same order as specified in the fusion rule (4.1).

In each case there will be a specific supervisor i that we will focus our
attention on. For this supervisor we will consider strings s′ ∈ L(E) such
that Pi(s

′) = Pi(s) and consider the global decision fN (s′, σ). Either
the global decision at s′ is the same as that at s, or they differ. We
will further assume that s′σ ∈ L(G) so that the difference, if present,
is material by (4.4). Since the string s′ is arbitrary, if we can conclude
proposition ϕ for s′, we can conclude it for all w′ ∈ [w]i, and hence
conclude Kiϕ for w.

Since the control policy for each controllable event is designed individu-
ally [RR22a], for brevity, going forward when we speak of supervisors i,
j, we implicitly mean i, j ∈ Nσ, i.e., supervisor i and supervisor j each
controls σ.

Case A. Suppose that for some i, the local decision is fi(Pi(s), σ) =
on, and consequently by (4.1.1) the fused decision must be fσ(s) =
enable.

By feasibility, it must be that fi(Pi(s
′), σ) = on as well, and con-

sequently fσ(s′) = enable as well. That is, in this case the global
decision at s′ must be the same as at s. Because we assumed the
supervisors solve the DSCOP, it must be that s′σ ∈ L(G) ⇒ s′σ ∈
L(E) by (4.4.2), which is equivalent to s′σ ̸∈ L(G) ∨ s′σ ∈ L(E).
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Hence, for this particular agent i, at world w, we have

Kiσe = K0
i σe

and

¬Kiσd = K0
i σd

holds. Hence

fi(Pi(s), σ) = on ⇒ K0
i σe ∧K0

i σd (4.6)

Also, from K0
i σe we have S0σe, which is exactly (4.3.1).

Case B. The case in which for some i, fi(Pi(s), σ) = off is reasoned
analogously to Case A, from which it follows that

fi(Pi(s), σ) = off ⇒ K0
i σe ∧K0

i σd (4.7)

and (4.3.2).

Note that in Case A and Case B, when defining the control protocol
(4.2) we explicitly excluded the situation where K0

i σe∧K0
i σd holds

at world w, which is equivalent to Ki(σe∧σd) and implies that σe∧
σd, i.e., (¬σG∨σE)∧¬σE, which, by disjunctive syllogism (modus
tollendo ponens), is in turn equivalent to ¬σG. Although this
contradicts the fact that sσ ∈ L(G) anyway and thus is redundant,
we nonetheless choose to precludeK0

i σe∧K0
i σd explicitly in (4.2.1)

and (4.2.2).

Case C. Suppose that for some i, fi(Pi(s), σ) = weak on, but for
no j, fj(Pj(s), σ) = on,off,weak off. Consequently by (4.1.3) the
fused decision must be fσ(s) = enable.

Suppose that the global decision at s′ differs from that at s, i.e.,
suppose fN (s′, σ) = disable, which is equivalent to s′σ ̸∈ L(E)
by (4.4.3). Moreover, suppose that the difference is material, i.e.,
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suppose s′σ ∈ L(G). That is, we have assumed that σd!. Then,
since supervisor i’s decision for s′ cannot be different from that
supervisor’s decision for s— by feasibility, there must be some
supervisor j other than i such that supervisor j’s decision for s′

differs from that supervisor’s decision for s, i.e., fj(Pj(s
′), σ) = off.

By the argument in case B applied to s′, we have K0
j σd (which is

O0σd because j ̸= i) hold at w′, provided the assumption that σd!
holds at w′, i.e., σd! ⇒ O0σd. Hence, for this particular agent i, at
world w, we have Ki(σd! ⇒ O0σd) = K1

i σe, i.e.,

fi(Pi(s), σ) = weak on ⇒ K1
i σe. (4.8)

Further, from K1
i σe we have

S1σe

(i.e., (4.3.3)) holds at w.

Case D. The case in which for some i, fi(Pi(s), σ) = weak off, but
for no j, fj(Pj(s), σ) = on,off,weak on is reasoned analogously
as in Case C. We can derive that

fi(Pi(s), σ) = weak off ⇒ K1
i σd (4.9)

and (4.3.4).

Case E. Finally, suppose that fi(Pi(s), σ) = abstain for all i. If
dft = enable = fN (s, σ), it must be sσ ̸∈ L(G) ∨ sσ ∈ L(E) by
(4.4.2). If dft = disable = fσ(s), it must be sσ ̸∈ L(E) by (4.4.3),
which gives ϕ = σd. Thus we derive (4.3.5).

Conditional-coobservability is sufficient (⇒)

For the proof of sufficiency, we use (4.5) as the characterization of
what it means to solve DSCOP. Controllability directly implies condition
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(4.5.1). What is left is to show that whenever conditional-co-observ-
ability holds, our knowledge-based control policy (4.2) is a solution to
the problem under the required fusion rule (4.1), i.e., it satisfies (4.5.2)
and (4.5.3).

Before proceeding to the proof, as we have promised, we need to show
how the knowledge-based control policy was derived.

Recall the proof for the necessity part. Gathering (4.6) to (4.9), we have
that for any solution fi, it is necessary that

fi(Pi(s), σ) = on ⇒ K0
i σe ∧K0

i σd

fi(Pi(s), σ) = off ⇒ K0
i σe ∧K0

i σd

fi(Pi(s), σ) = weak on ⇒ K1
i σe

fi(Pi(s), σ) = weak off ⇒ K1
i σd

To recover a design of the agents, we essentially need to establish the
implication in the other direction, with the additional requirement that
the cases of the definition must be exhaustive and mutually exclusive.
We attempt to establish the mutual exclusiveness in the most obvious
way: i.e., define the control protocol as (4.2). It is clearly fully defined
due to the “otherwise” clause.

Then note that conditional-co-observability is equivalent to

(I, w) |=
∨
i∈Nσ

K0
i σe ∨K0

i σd

∨K1
i σe ∨K1

i σd

∨ σ∗.

(4.10)

So, when (4.10) holds, according to (4.2), fi(Pi(s, σ)) = abstain if and
only if

(I, w) |= K0
i σe ∧K0

i σd (4.11.1)

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd (4.11.2)

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd ∧ σ∗, (4.11.3)
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hence we can replace the “otherwise” clause in (4.2) by (4.11). We now
reproduce the knowledge-based protocol as follows:



on if (I, w) |= K0
i σe ∧K0

i σd

off if (I, w) |= K0
i σe ∧K0

i σd

weak on if (I, w) |= K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

weak off if (I, w) |= K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

abstain if (I, w) |= K0
i σe ∧K0

i σd

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd ∧ σ∗,

KP i(w, σ) =

(4.12.1)

(4.12.2)

(4.12.3)

(4.12.4)
(4.12.5)

(4.12.6)

(4.12.7)

By intentionally putting (4.11) into disjunctive normal form, we reveal
two distinct roles of the abstain decision. First, as discussed, the situ-
ation (4.11.1) cannot happen unless sσ ̸∈ L(G). Then, (4.11.2) is the
true abstaining decision, since regardless of the legality of σ, there is
always some other supervisor that can make a correct decision. In the
case of (4.11.3), since all epistemic formulae are negated, we take, for
now, that (4.11.3) expresses the situation that the supervisor is in a
“doesn’t know” situation.

To verify the correctness of our knowledge-based control protocol (4.12),
we perform a case analysis over conditional-co-observability. The trick
is how to split the cases so that in each case we can infer the local
decisions. Then a natural way to proceed is to split the cases according
to the lines defining (4.12). Recall that the cases are exhaustive given
conditional-co-observability, since that is how (4.11) was obtained.

To establish (4.5.2) and (4.5.3), fix an s ∈ L(E), σ ∈ Σc such that sσ ∈
L(G). Let w be the world s leads to. Since conditional-co-observability
(4.10) holds at w, there is a supervisor i for which K0

i σe∨K0
i σd∨K1

i σe∨
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K1
i σd ∨ σ∗ holds. Consider the following cases, which, as argued above,

are exhaustive. We will show that in each case, (4.5.2) and (4.5.3) hold.

Case 1. If K0
i σe ∧K0

i σd (i.e., (4.12.1)), then locally we have that i
issues on by (4.12.1), and by K0

i σe globally we have sσ ∈ L(E).
So (4.5.3) holds vacuously. To show (4.5.2), it suffices to show
that the fused decision is enable. We argue that it is impossible
for there to be some supervisor j that issues off. If that were
possible, we’d have K0

j σd, which, together with K0
i σe, would imply

sσ ̸∈ L(G), contradicting the assumption.

Case 2. The case K0
i σe ∧ K0

i σd (i.e., (4.12.2)) is reasoned analo-
gously to Case 1.

Case 3. If K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd (i.e., (4.12.3)), then locally
we have that i issues weak on by (4.12.3).

a) If sσ ∈ L(E), we desire that the fused decision be enable.

i. If some supervisor j issues the decision on, then as ar-
gued in Case 1, there cannot be a third supervisor k
issuing the decision off, thus the fused decision must be
enable by (4.1.1).

ii. If some j issues the decision off, then, by (4.12.2) we’d
have K0

j σe ∧K0
j σd, and the argument can be established

by letting j play the role of i in Case 2.

iii. If some j issues the decision weak off, then by (4.12.4),
we have K1

j σd, which implies that σe! ⇒
∨

k ̸=j Kkσe.
Since we do have σe! by sσ ∈ L(E), there is some k such
that Kkσe. Moreover, we have that Kkσd since sσ ∈ L(G).
Then the argument can be established by letting k play
the rule of i in Case 1.
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iv. Otherwise, the fused decision must be enable, as desired.

b) If sσ ̸∈ L(E), we desire that the fused decision be disable.
The argument is analogous to Case 3(a)

Case 4. The case K0
i σe ∧ K0

i σd ∧ K1
i σe ∧ K1

i σd (i.e., (4.12.4)) is
reasoned analogously to Case 3.

Case 5. The caseK0
i σe∧K0

i σd (i.e., (4.12.5)) contradicts sσ ∈ L(G)
as argued.

Case 6. If K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd (i.e, (4.12.6)), then locally
we have that i issues abstain by (4.12.6). Recall that by our
analysis of the abstain decision, this represents the true abstaining
decision. The argument is established analogously to Case 3 and
Case 4.

Case 7. If K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd ∧ σ∗ (i.e., (4.12.7)), then
locally we have that i issues abstain by (4.12.7). Recall that by
our analysis of the abstain decision, this represents the “doesn’t
know” decision.

a) If ∗ = e, i.e., sσ ∈ L(E), we desire that the fused decision be
enable. If there is some supervisor j that issues the decision
on, off, weak off, then the fused decision is enable by an
argument exactly the same as Case 3(a). If there is some
supervisor j that issues the decision weak on, then the fused
decision is enable by letting j play the rule of i in Case 3. In
the last case where all supervisors issue the decision abstain,
the desired fused decision can be achieved by setting dft to
enable in (4.1.5).

b) The case that ∗ = d, i.e., sσ ̸∈ L(E), is argued analogously. □
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We have thus completed the derivation of the problem solvability con-
dition and a knowledge-based control protocol from the fusion rule.
Additionally, the process is entirely methodologically and at no point
requires human cleverness. We hence propose this process as a pro-
totypical example of a more uniform, formal approach to study other
decentralized architectures.

One drawback of the expressions (4.3.5) and (4.12.7) is that they
contain the non-epistemic term σ∗ (which becomes either σe or σd),
and therefore does not provide any insight into what knowledge an
agent must possess to support the agent’s actions. Consequently, we
interpreted the situation (4.12.7) as that the supervisor possesses no
knowledge. However, we will demonstrate that it does, in fact, possess
some knowledge.

We resume the proof of Case E and show that further progression
will lead to an epistemic expression in place of (4.3.5). We start by
aggregating local properties of strings s′ indistinguishable from s to a
specific supervisor i as we have done for all other cases, so that we can
obtain an epistemic expression.

Similar to the argument in Case C, suppose the global decision at s′

differs from that at s, i.e., suppose fN (s′, σ) = disable, which is equiv-
alent to s′σ ̸∈ L(E) by (4.5.3). Moreover, suppose that the difference
is material, i.e., suppose s′σ ∈ L(G). That is, we have assumed σd!.
Now let j be the supervisor such that fj(Pj(s

′), σ) = off or weak off
(these are the only two possibilities to get fN (s σ) = disable by (4.1)).
Applying the argument in Case B or Case C to s′ with j playing the role
of i, we have Kjσd (which is Oσd because j ̸= i) or Kj(σd! ⇒ O(σd))
(which is O(σd! ⇒ Oσd)).

Hence at w, if dft = enable, we have

K2
i σe := Ki(σd! ⇒ Oσd

∨O(σd! ⇒ Oσd));
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and by a similar argument, if dft = disable, we have

K2
i σd := Ki(σe! ⇒ Oσe

∨O(σe! ⇒ Oσe)).

I.e.,
fi(Pi(s), σ) = abstain ⇒ K2

i σ∗ (4.13)

Also, we have S2σ∗.

That is, (4.3) can now be formally replaced with

(I, w) |= S0σe ∨ S0σd

∨ S1σe ∨ S1σe

∨ S2σ∗,

(4.14)

where ∗ is either e or d.

With the reformulated expression of conditional-co-observability, in
exactly the same way we obtained (4.11) in the original proof, now we
can further establish that fi(Pi(s, σ)) = abstain if and only if

(I, w) |= K0
i σe ∧K0

i σd (4.15.1)

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd (4.15.2)

∨K0
i σe ∧K0

i σd ∧K1
i σe ∧K1

i σd ∧K2
i σ∗. (4.15.3)

We have discussed the meaning of the first two disjuncts in the proof.
In the last case, abstain is instead used as an even weaker version of
weak on or weak off, as indicated by the expression K2

i σ∗. But in any
case, it is not entirely illustrative to say that the supervisor “doesn’t
know”, which is what Ricker and Rudie [RR07] called the “abstain”
decision.

Finally, while we only demonstrated the epistemic formalism on the
conditional architecture, the approach can be systematically extended
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over the more general inference-based architectures [KT07]. One note
is that as the level of inference increases, the recursive structure of
epistemic expressions KM

i and KN
i explodes in size quickly. Hence it is

not advised to explicitly expand out the expression for evaluation, but
to employ dynamic programming.

4B1 A Visualization to Aid in the Revision of Problem
Requirements

A procedure to synthesize a sublanguage is already provided by Takai
and Kumar [TK08], presented in a non-epistemic formalism. We will
demonstrate, with an example, that our epistemic logic formalism— or
more specifically, the Kripke structures — can provide a visual aid to
understand the approach of Takai and Kumar [TK08]. We also adopt
the same approach of Takai and Kumar [TK08] to the synthesis of
a superlanguage. While we will not pursue it in the demonstration,
one will see that the same methodology can be extended to revise the
problem requirement to synthesize incomparable languages. We refer
the reader to [RR21] for an even more compact visualization, underlying
which is nonetheless the epistemic interpretation.

Consider the following example. The set of possible events is Σ = {α1,
α2, β1, β2, γ, µ }, observable event sets are Σ1,o = {µ }, Σ2,o = { β1,
β2 }, and controllable event sets are Σ1,c = Σ2,c = { γ }. The plant
G and legal language specification E are captured in the automaton
G′ = G × P1(G) × P2(G) depicted in Fig. 4.1. The language L(E) is
marked by states with double borders. Since the states of G′ are the
worlds of its Kripke structure, we can embed the Kripke structure in the
representation of G′ as shown in Fig. 4.1. The problem is to determine
whether there exist two supervisors with the observable and controllable
event sets given above, such that L(fN/G) = L(E).
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8 
1, 2, 3, 4, 5, 6, 7, 8, 9 

4, 8

2 
1, 2, 3, 4, 5, 6, 7, 8, 9 

0, 1, 2, 3, 6, 7, 10

4 
1, 2, 3, 4, 5, 6, 7, 8, 9 

4, 810 
0, 10 

0, 1, 2, 3, 6, 7, 10

0 
0, 10 

0, 1, 2, 3, 6, 7, 10

1 
1, 2, 3, 4, 5, 6, 7, 8, 9 

0, 1, 2, 3, 6, 7, 10

3 
1, 2, 3, 4, 5, 6, 7, 8, 9 

0, 1, 2, 3, 6, 7, 10

5 
1, 2, 3, 4, 5, 6, 7, 8, 9 

5, 9

7 
1, 2, 3, 4, 5, 6, 7, 8, 9 

0, 1, 2, 3, 6, 7, 10

0 
0, 10 

0, 1, 2, 3, 6, 7, 10

10 
0, 10 

0, 1, 2, 3, 6, 7, 10

1 
1, 2, 3, 4, 5, 6, 7, 8, 9 

0, 1, 2, 3, 6, 7, 10

6 
1, 2, 3, 4, 5, 6, 7, 8, 9 

0, 1, 2, 3, 6, 7, 10

7 
1, 2, 3, 4, 5, 6, 7, 8, 9 

0, 1, 2, 3, 6, 7, 10

3 
1, 2, 3, 4, 5, 6, 7, 8, 9 

0, 1, 2, 3, 6, 7, 10

5 
1, 2, 3, 4, 5, 6, 7, 8, 9 

5, 9

9 
1, 2, 3, 4, 5, 6, 7, 8, 9 

5, 9

Figure 4.1: The automaton G′ = G×P1(G)×P2(G) with its correspond-
ing Kripke structure embedded in it. A state (qG, q

obs
1 , qobs2 ) is

represented in the figure with q, qobs1 , qobs2 stacked vertically
in that order. The equivalence classes are marked according
to the following rule: a state is marked at the upper left
(resp. upper right) corner according to its containing equiv-
alence class formed by the accessibility relation ∼1 (resp.
∼2); the symbols for the equivalence classes are deliberately
chosen, so, for instance, the states that supervisor 2 thinks
the plant could be in after it sees β1 are in the equivalence
class B1B1B1.
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Let us focus on γ since it is the only controllable event. Hence we focus
on states 0, 2, 3, 4, 5, since these are the states where γ can happen.

In state 4 (resp. 5), supervisor 2 can enable (resp. disable) γ. In state 0,
supervisor 1 can enable γ. But in states 2, 3, which are indistinguishable
to both supervisors, since they are both in the same equivalence classes
(M1M1M1 for supervisor 1 and B0B0B0 for supervisor 2), neither supervisor 1
nor 2 can control γ unambiguously. Hence the language L(E) is not
conditional-co-observable.

The representation of G′ and the epistemic interpretation of conditional
control decisions provides guidance for how to modify the control re-
quirement to obtain a conditional-co-observable language.

If we are looking for a sublanguage, we can only make legal states illegal
but not vice versa. By our previous analysis, at least one supervisor
is able to make a correct control decision unambiguously in states
S = {0, 1, 4, 5, 7, 8, 10}, hence all we need to worry about are the states
in the set M1M1M1 − S = B0B0B0 − S = {2, 3}. To resolve the conflict that γ is
legal at state 3 but illegal at state 2, we can make state 7 illegal.

To see how making state 7 illegal gives a conditional-co-observable
sublanguage, let’s look at states in M1M1M1 and B0B0B0. At states in M1M1M1, γ is
illegal at states 2, 3, 5 but is legal at state 4. With only binary control
decisions, supervisor 1 cannot possibly make an unambiguous decision.
We can see that supervisor 2 is in a similar situation by examining
states in B0B0B0. However, with the ability to infer the knowledge of other
supervisors and the conditional decisions at their disposal, the desired
control requirement can be achieved. Suppose that supervisor 1 is
an intelligent being, and let’s imagine how the intelligent being may
attempt to solve the dilemma. Consider what if supervisor 1 were to try
to guess the legality of γ after it sees µ. Clearly this guess is not always
correct, i.e., it is false at exactly state 4. But knowing that the other
supervisor can unambiguously enable γ if the plant is indeed at state
4 supervisor 1 is then able to focus on only the rest of the states in M1M1M1,
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and fortunately, its guess is correct in all of them. Hence supervisor 1
can confidently disable γ at states in M1M1M1 unambiguously, knowing its
mistake would be corrected by the other supervisor. Similar reasoning
is also carried out by supervisor 2.

The design of the fusion rule is exactly to allow the correction of mis-
takes. A weak off is issued by a supervisor knowing that if disabling the
event is incorrect then another supervisor can correct the first supervisor
by a definite on decision.

Formally, with state 7 made illegal, states { 2, 3 } are unambiguous.
However, since the set { 2, 3 } is a proper subset of both M1M1M1 and B0B0B0,
and states in both sets M1M1M1 and B0B0B0 remain ambiguous, the conditional
decision, i.e., weak off has to be issued at states in the set M1M1M1 (resp. B0B0B0)
by supervisor 1 (resp. supervisor 2).

If it is reasonable for the problem at hand to admit a solution that is not
necessarily a sublanguage, we can also make state 6 legal too. By similar
reasoning as we just did, supervisor 1 should issue decision weak on at
states 2, 3; and supervisor 2 can issue decision on at states in the set B1B1B1,
since this set is no longer ambiguous.

4C Conclusion

In this chapter, we discuss how decentralized control problems can
benefit from the use of epistemic logic.

We point out that epistemic logic can be used to discuss not only some
specific classes of DSCOP [RR00; RR07], but also it can be used more
broadly to describe other classes of decentralized supervisory control
problems. The use of epistemic formalism provides a formal approach
towards describing decentralized problems, and consequently allows
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mechanical derivation of problem solvability conditions and solution
constructions. The derivation also results in direct coupling between
the expression of problem solvability condition and the expression de-
scribing the control policies. This line-by-line coupling allows us to use
the same expression throughout the discussions of proving necessary
and sufficient conditions, of describing the algorithm to construct the
supervisors, and of verifying the correctness of the algorithm.

From the forgoing discussions, we would expect other decentralized
control or diagnosis conditions could be treated in a comparable fashion.
For instance, consider the work of Kumar and Takai [KT07], which is
more general than that of Yoo and Lafortune [YL05]. We developed our
epistemic expressions based on Yoo and Lafortune [YL05] because it
is simpler and thus we are able to demonstrate our key ideas without
more complex (yet not conceptually different) technical development.
The same principles demonstrated here could apply to Kumar and Takai
[KT07] as well. The only technical difference is that one would need to
use a finer, (possibly infinite) string-based Kripke structure as described
by Ricker and Rudie [RR00], along with a corresponding definition of
relations ∼i.

Casting the decentralized problem the way we did makes it easier
to understand the reasoning behind various control decisions. We
believe that one advantage of our framework is that in trying to come
up with solutions to future DES problems, this framework can aid in
going directly from a working supervisor solution to the necessary and
sufficient conditions that would match such a solution. Moreover, if the
constraints of some given problem are not met (and hence that problem
is not solvable as is using decentralized control), our model makes it
more apparent how to alter the constraints in a way that is meaningful
for the application at hand.
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5 Unification of the Conditional
Architecture and Inference-
Based Architectures

Kumar and Takai [KT07] demonstrated formally that the conditional
architecture sits within the hierarchy of inference-based architectures.
However, the conditional architecture is formally specified in a way
that is different from how the other inference-based architectures are
specified. This difference is manifested in two different forms. Locally,
the conditional architecture allows all supervisors to simultaneously
abstain; whereas other architectures in the hierarchy do not permit
simultaneous abstention. Globally, solving a DSCOP with the conditional
architecture involves choosing a fusion rule from f enable and fdisable, i.e.,
a default decision, for each event; whereas the other inference-based
architectures eliminate the necessity for a default decision. Using the
reformulation in Section 4B, we are able to explain how the need for
a default decision is eliminated, namely by separating abstain into a
true abstaining decision and a higher-level inferencing decision. Then
in the case where all supervisors abstain, it will turn out that some of
the abstain are actually a higher-level inferencing decision.

The epistemic formalism is illuminating and suggestive. As discussed
in the proof, the abstain decision plays two roles. Hence we proceed
to reformulate the conditional architecture by splitting the roles of the
abstain decision. Consider the set of control decisions CD = { enable0,
disable0, enable1, disable1, ∗2, ⊥} (we intentionally use tokens
distinguished from what we have been using), where ∗2 has to be
chosen from enable2 and disable2 for each σ ∈ Σc, the fusion rule fσ
for σ is defined to take cd as the fused decision if cdi is the local decision
with the smallest i. Note that this implies that 1) if, say, enablei is
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the local decision with the smallest i, then there must be no supervisor
issuing disablei; and 2) at least one supervisor must issue a decision
that is not ⊥, i.e., not all supervisors abstain.

We intentionally used different symbols for the control decisions in the
reformulation so it is clear whether a symbol refers to a decision in the
original or the re-formulation.

It can be seen intuitively that the original and the reformulation are
equivalent.

First, the original can be embedded in (translated to) the reformulation
by the following mapping:

on 7→ enable0

off 7→ disable0

weak on 7→ enable1

weak off 7→ disable1

abstain 7→ ∗2

and vice versa

enable0 7→ on
disable0 7→ off
enable1 7→ weak on
disable1 7→ weak off

∗2 7→ abstain
⊥ 7→ abstain

In particular, the second mapping shows the two roles that abstain plays,
where ⊥ is the true abstaining decision. With this reformulation, it is
not possible for all supervisors to simultaneously issue the ⊥ decision,
i.e., they can’t all truly be issuing a “don’t know” decision.
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For a more formal justification behind the embedding argument and a
general discussion on its application in demonstrating relative strength
of two architectures (especially equivalence), we defer to Chapter 8.

It is now clear how the conditional architecture belongs to the hierar-
chy of inference-based architectures. Consider arranging the control
decisions in any inference-based architecture into two chains:

enable0 ≤ disable1 ≤ enable2 ≤ . . . ≤ aN

and

disable0 ≤ enable1 ≤ disable2 ≤ . . . ≤ bM .

Then the fusion rule of an inference-based architecture can be con-
sidered as an arbiter that resolves conflicts in local decisions, and the
problem solvability condition for that architecture is essentially requir-
ing that the conflicts are always resolvable. Since it is the supervisors
that infer, and the architecture is arbitrating, we call an inference-based
architecture an arbitration architecture, and call its respective prob-
lem solvability co-inferability. Then an arbitration architecture can be
identified by a pair of numbers (N,M) that describe the chains above.
Hence the conditional architecture, based on the choice of xi for an
event σ ∈ Σc, is either a (1, 2)-arbitration architecture, or a (2, 1)-arbi-
tration architecture for σ. Hence we call the conditional architecture
“[(1, 2)/(2, 1)]-arbitration architecture”.

In the original numbering of the arbitration architectures, Kumar and
Takai [KT07] would assign an (N,M)-architecture the number max{N,
M } − 1, hence in their numbering many architectures of different
capabilities receive the same number.

Our new numbering scheme allows more precise placement of many
known architectures within the hierarchy as depicted in Fig. 5.1.

It should be noted that the architectures (0, 1)/(1, 0) and (1, 2)/(2, 1)
are not each a single architecture but a compound architecture. For

105
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Architectures

(2, 2)

(1, 2)/(2, 1)

conditional
[YL04]

(2, 1)
(1, 2)

[RR07]

(1, 1)

(0, 1)/(1, 0)

general

[YL02]

(1, 0)

C&P
[RW92]

(0, 1)

D&A
[PKK97]

(0, 0)

C&P∧D&A
[RR22c]

Figure 5.1: Some commonly known architectures are placed within the
arbitration hierarchy, ordered by the “more general than”
relation. An informal name is given alongside the numeric
identification, if such a name has been established for either
the architecture itself or for the respective co-inferability
condition (e.g., the co-inferability of the (1, 0)-arbitration
architecture is called C&P co-observability). Some archi-
tectures are given with no reference, if they have not been
studied in particular, but are placed in the graph for com-
pleteness.
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References

example, our analysis above shows that the conditional architecture
(now identified as (1, 2)/(2, 1)) selects one of the two (1, 2) and (2, 1)
architecture for each controllable event. If one excludes the compound
architectures from Fig. 5.1, then Fig. 5.1 would depict part of the lattice
of the hierarchy of arbitration architectures: given two architectures
(N1,M1) and (N2,M2), their join and meet are given by component-
wise max and min, respectively. Note that the lattice of co-inferability
conditions, ordered by logical implication, is opposite to the lattice of
arbitration architectures.
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6 A Visualization of Inference-
Based Supervisory Control in
Discrete-Event Systems

A visualization to aid in the construction of inference-based decen-
tralized supervisors is presented. In the inference-based architecture,
supervisors have different levels of ambiguity, which reflects to what
degree a supervisor is confident in its control decision and to what
degree a supervisor infers a control decision based on the supervisor’s
knowledge of another supervisor’s control decision.

6A Introduction

The problem of decentralized supervisory control of discrete-event sys-
tems, considers restricting a plant’s behaviour with a group of local
supervisors, and requires each local supervisor to judge, according to its
partial observation of the plant, suitable control decisions in order to
achieve desired fused decisions.

While it has not been stated explicitly, since the earliest study of de-
centralized supervisory control, the control architectures have been
designed so that supervisors issue control decisions according to their
varying degree of “confidence”. The earliest architecture considered
by Rudie and Wonham [RW92] allows supervisors to disable events
when they are in total confidence, entailing that the problem is solvable
whenever at all states at which an event must be disabled, at least one
supervisor is totally confident that the event must be disabled. Dually,
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Prosser, Kam, and Kwatny [PKK97] allow supervisors to enable events
when they are in total confidence.

It has been known that the architectures of Rudie and Wonham [RW92]
and Prosser, Kam, and Kwatny [PKK97] are not compatible, so that
there are problems solvable in one architecture but not solvable in the
other. To bring both architectures into unity, Yoo and Lafortune [YL02]
considered an architecture in which supervisors are allowed to both
disable and enable events when they are in total confidence.

Kumar and Takai [KT07] then called the lack of confidence ambiguity.
They studied and then concluded that “unconfident” supervisors can
still contribute in shaping the fused decisions, even when supervisors
are ambiguous in some special ways. Such special ambiguities, as
Kumar and Takai [KT07] have put it, come in levels of gradations, so
that the control decision of a supervisor who is in an ambiguity of a
lower gradation should be preferred over that of one who is in a higher
level of ambiguity. This extension is formulated in the N -inferencing
architecture by Kumar and Takai [KT07], where N is the highest level
of ambiguity one would like to permit.

Kumar and Takai [KT07] gave a verifiable necessary and sufficient
condition for a decentralized control problem to be solvable under the
N -inferencing architecture, which they called N -inference-observable.
Later Takai and Kumar [TK08] provide an algorithm to synthesize the
supervisors whenever it is possible.

We see that the verification and supervision synthesis processes by Takai
and Kumar are described with vigorous formalism, but may not be
accessible to DES researchers not already expert in the inferencing
architecture. Moreover, the solutions do not offer much insight into
understanding why they work. Therefore, this chapter provides a visual-
ization of inference-based supervisory control. The visualization is done
for an algorithm that performs both verification and supervision syn-
thesis concurrently, and is slightly modified to guarantee convergence.
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6B Inference-based Architecture

Potential implications of this modification are discussed as well.

6B Inference-based Architecture

The inference-based architecture, as expressed in Defn. 2A1.1, consists
of the set of control decisions CD = { enablei,disablei }i∈N∪{ abstain },
where the control decisions enablei (resp., disablei) is used by a super-
visor with the intention to enable (resp., disable) an event, and the
number i indicates the level of ambiguity of a supervisor. The special
decision abstain is used to denote a supervisor that refrains from voting.
Alternatively, we use the notation (enable, i) to denote enablei. We do
similarly for disablei.

As we would like to prioritize more highly the decisions of the super-
visors who are more certain, and the higher the ambiguity level of a
supervisor, the less certain the supervisor is. We reflect this in the partial
ordering < over CD defined as follows:

• For cd1, cd2 ∈ { enable,disable } and i, j ∈ N, whenever i < j, let

(cd1, i) < (cd2, j)

• For all (cd, i) ∈ CD, let

(cd, i) < abstain

That is, a decision with smaller index trumps decisions with larger
indices. The relation is illustrated in Fig. 6.1.

With the ordering < over CD, we can loosely express the fusion rule f
compactly as

fσ({ cdi }i∈Nσ) := min{ cdi }i∈Nσ
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enable0 disable0

enable1 disable1

abstain

... ...

<

Figure 6.1: The partially ordered set (CD, <).

Even though the expression is somewhat lax, the fusion rule is in-
deed well-defined, as we will demonstrate that the minimal element in
{ cdi }i∈N is unique, at any legal state for any physically possible event.
That is, it is impossible for both enablei and disablei to be minimal.
Consequently, the notion of validity1 introduced by Kumar and Takai
[KT07], which requires that fσ({ cdi }i∈Nσ) be a total function, becomes
redundant.

Kumar and Takai [KT07] provide a necessary and sufficient condition for
DSCOP to be solvable when the level of ambiguity is at most an arbitrary
but fixed N . In particular, there was no known way to determine that
there does not exist a number N , such that the level of ambiguity does
not exceed N . This condition is called N -inference-observability.

When the legal language is N -inference-observable, the supervisors can
be synthesized following Takai and Kumar [TK08].

1In their earlier work, Kumar and Takai [KT05] had a different but equivalent notion
called admissibility. Also note that this is not the notion of validity we recalled in
Defn. 2A1.1.
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6C Visualization

6C Visualization

In this section, we illustrate our visualization algorithm step-by-step on
the following example: let G be the plant illustrated by Fig. 6.2, where
double circled states are those in QE. Let Σ1,o = {α, α′ }, Σ2,o = { β, β′ }
and Σ1,c = Σ2,c = { γ }. This example is derived from Kumar and Takai
[KT07, Fig. 1]: we removed half of the plant for compactness

To begin the algorithm, construct the automaton G′ = (Σ, Q′, δ′, q′0) :=
G× P1(G)× . . . Pn(G). For our visualization technique, we execute the

3'

35

5' 4'

4

2'1'

1 2

Figure 6.2: Plant G

4 
2, 2', 4, 4' 

4, 4'

2' 
2, 2', 4, 4' 
1, 1', 2, 2'

4' 
2, 2', 4, 4' 

4, 4'

1 
1, 1', 3, 3' 
1, 1', 2, 2'

1' 
1, 1', 3, 3' 
1, 1', 2, 2'

2 
2, 2', 4, 4' 
2, 2', 1, 1'

3' 
1, 1', 3, 3' 
3, 3', 5, 5'

3 
1, 1', 3, 3' 
3, 3', 5, 5'

5 
5, 5' 

3, 3', 5, 5'

5' 
5, 5' 

3, 3', 5, 5'

Figure 6.3: Automaton G′. A state (qG, q
obs
1 , qobs2 ) is represented in the

figure with q, qobs1 , qobs2 stacked vertically in that order. States
are also labelled by their equivalence classes ker ∼1= {AaAaAa,
AbAbAb, AcAcAc } (resp., ker ∼2= {BaBaBa, BbBbBb, BcBcBc }) in the upper left
(resp., upper right) corner.
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standard subset construction procedure [HMU06] to represent projec-
tions, which results in a computation taking space exponential to the
number of states of G and to the number of agents. This automaton has
a few nice properties. First, although G′ is not necessarily isomorphic to
G, we have L(G′) = L(G), hence one can always assume, without loss
of generality, that the plant is actually implemented as G′ instead of G.
Then, for all states q′ = (qG, q

obs
1 , . . . , qobsn ) ∈ Q′ (assuming accessibility

of G′), it is always the case that q ∈ qobsi for i ∈ N ; conversely, for all
q ∈ qobsi there always exists a state q′ such that q′ = (qG, . . . , q

obs
i , . . . ).

That is, the states Q′ record both the plant’s actual state, and each
supervisor’s estimation of the plant’s state.

Next, form the (partial) equivalence relations {∼i }i∈N over Q′ ⊆ Q×
Qobs

1 × · · · × Qobs
n , so that two states q′ = (qG, q

obs
1 , . . . , qobsn ) and p′ =

(pG, p
obs
1 , . . . , pobsn ) are related by ∼i iff qobsi = pobsi . I.e., q′ ∼i p

′ whenever
q′ and p′ are indistinguishable to supervisor i. The equivalence class
with respect to ∼i containing a state p is denoted as [p]i, whenever such
class exists. We extend the operators [·]i additively, so that given a set P
of states, [P ]i =

⋃
p∈P [p]i.

The automaton G′ and the equivalence relations ∼i are illustrated in
Fig. 6.3.

Now we proceed to the actual visualization. For ease of presentation
and due to space limitation, we interleave our running example with
the formal definition.

Then for each controllable event σ we construct a tabular representation
of the equivalence relations ∼i. We dedicate the columns for states in Q′,
and in each row i indicate in the corresponding columns the equivalence
classes the states are in. The table is thus a Venn diagram, displaying
overlappings between equivalence classes as vertical adjacencies.

With Fig. 6.3 as the example, the table for event γ is shown in Fig. 6.4.
In the tabular diagram, we use different colours to distinguish different
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equivalence classes. For illustration purposes, we append, two additional
rows as follows. The third row indicates the corresponding states for
the columns. Since for this particular example, the automaton G′ is
isomorphic to G, we thus label the columns with states in QG instead of
Q′ for compactness. In the fourth row we indicate whether we desire
c to be enable’d (as it leads to a legal state), which we indicate with
EEE; or disable’d (as it leads to an illegal state), indicated with DDD. States
at which the event c is not physically possible are indicated by the
absence of tokens in the bottom row. For example, states 3, 3′, 5, 5′

are indistinguishable by supervisor 2, being in the equivalence class BaBaBa,
and we desire that the event c be enable’d (resp., disable’d) at state
5 (resp., 3), whereas since c is physically impossible at states 3′ and 5′,
any decision is permitted.

AaAaAa AbAbAb AcAcAc

BaBaBa BbBbBb BcBcBc

555

EEE

5′5′5′ 333

DDD

3′3′3′ 111

EEE

1′1′1′ 222

DDD

2′2′2′ 444

EEE

4′4′4′

Figure 6.4: Tabular representation of G′ in Fig. 6.3

Note that in this example, we enjoy the nice consequence of G′ being
isomorphic to G, hence we can label the columns by qG ∈ QG, instead
of (qG, qobs1 , qobs2 ) ∈ QG ×Qobs

1 ×Qobs
2 .

For aesthetic purposes, we intentionally arranged the table so that
columns of the same equivalence class are adjacent. Note that whether
such an arrangement is possible has no implication for problem solvabil-
ity.

We thus see that the benefit of this tabular representation is to com-
pact information we need to construct the control policy while discard
irrelevant information such as transitions.
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For states at which the event is physically impossible, since any decision
is permitted, we can put off the consideration of these states until the
end of the algorithm, and consider only states at which the event is
physically possible, thus decisions for the event are pending at those
states. Similarly, since illegal states would not be reachable should
correct control has been enforced along the way, we only have to con-
sider decisions at legal states. Therefore, as step 0 of the algorithm,
we compute D0(σ), the set of states where the desired fused decision
should be disable and E0(σ), the set of states where the desired fused
decision should be enable:

D0(σ) := { q ∈ Q′ | δ(qG, σ)! ∧ δ(qG, σ) ̸∈ QE }
E0(σ) := { q ∈ Q′ | δ(qG, σ)! ∧ δ(qG, σ) ∈ QE }

Notice that D0(σ) and E0(σ) are disjoint.

Let U0(σ) := D0(σ) ∪ E0(σ) be the collection of states at which local
control decisions are yet undetermined. Then, we restrict the partial
equivalence relations ∼i to U0(σ). We then obtain a more compact table.
To illustrate this “preprocessing” step, Fig. 6.4 becomes Fig. 6.5 with the
irrelevant states removed.

AaAaAa AbAbAb AcAcAc

BaBaBa BbBbBb BcBcBc

555

EEE

333

DDD

111

EEE

222

DDD

444

EEE

Figure 6.5: Fig. 6.4 after the preprocessing to remove irrelevant states,
i.e., step 0 of the algorithm on the example.

Step 0 corresponds to the computation of the following two languages
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in [KT07; TK08]2:

D′
0(σ) := { s ∈ L(E) | sσ ∈ L(G)− L(E) }

E ′
0(σ) := { s ∈ L(E) | sσ ∈ L(E) }

(6.1)

Then we iteratively remove states in the table according to the follow-
ing rule, until the rule no longer applies. At step k + 1, consider all
equivalence classes of all supervisors. If all states of a class are marked
identically, say EEE, then remove the columns corresponding to these
states from the table, and let the corresponding supervisor of the class
issue the decision enablek for all states in that class, including those
removed in the previous steps. Do the same thing for the mark DDD, with
the decision disablek instead.

Formally, compute the following set:

Dk+1(σ) := Dk(σ) ∩

( ⋂
i∈Nσ

[Ek(σ)]i

)
(6.2.1)

= Dk(σ)−

[
Dk(σ)−

( ⋂
i∈Nσ

[Ek(σ)]i

)]

= Dk(σ)−

[ ⋃
i∈Nσ

(Dk(σ)− [Ek(σ)]i)

]

= Dk(σ)−

[ ⋃
i∈Nσ

(Uk(σ)− [Ek(σ)]i)

]

2The notation by Kumar and Takai does not contain prime symbols. We use prime
symbols when referring to their languages to distinguish them from our sets of
states.
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where the set Uk(σ) − [Ek(σ)]i contains all pending states which are
not confused with any state in Ek(σ) as perceived by some supervisor
i. At these states, supervisor i unambiguously knows that σ has to be
disabled. Therefore, a decision can be chosen, and we remove these
states from the pending set. Similarly, compute the set

Ek+1(σ) := Ek(σ) ∩

( ⋂
i∈Nσ

[Dk(σ)]i

)
(6.2.2)

= Ek(σ)−

[ ⋃
i∈Nσ

(Uk(σ)− [Dk(σ)]i)

]
Notice that Dk+1(σ) and Ek+1(σ) are disjoint.

Then, let supervisor i issue the decision disablek at all states in the set
Uk(σ)− [Ek(σ)]i, and enablek at all states in the set Uk(σ)− [Dk(σ)]i.

Finally, we restrict the partial equivalence relations ∼i to Uk+1(σ) =
Dk+1(σ) ∪ Ek+1(σ).

One important observation of this process is that for a state removed
at step i, the minimal control decision issued at that state is unique,
and can be denoted (cd, i). Furthermore, cd is exactly the desired fused
decision.

The expressions (6.2.1) and (6.2.2) of the sets Dk+1(σ) and Ek+1(σ)
correspond to the following languages in Kumar and Takai [KT07] and
Takai and Kumar [TK08]:

D′
k+1(σ) := D′

k(σ) ∩

( ⋂
i∈Nσ

P−1
i Pi(E

′
k(σ))

)

E ′
k+1(σ) := E ′

k(σ) ∩

( ⋂
i∈Nσ

P−1
i Pi(D

′
k(σ))

) (6.3)

However, the correspondence is not exact: the computation of Dk(σ)
and Ek(σ) eventually converge while the computation of D′

k(σ) and
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E ′
k(σ) does not always converge. To not interrupt the current discussion,

we continue illustrating the algorithm with the example and come back
to the issue of convergence at the end of this section.

To illustrate the algorithm with the example, consider the equivalence
classAaAaAa in step 0, Fig. 6.5. Since all states inAaAaAa (in this case, just a single
state 5) are marked EEE, let the supervisor 1, from whose equivalence
relation ∼1 the equivalence class AaAaAa was created, issue the control
decision enable0 for the event c at all states in AaAaAa (viz. just state 5).
Then we remove the column for state 5. We use a similar strategy to
remove the column for state 4 with supervisor 2 and equivalence classBcBcBc

being the analogues of supervisor 1 and AaAaAa in the foregoing argument.

This brings us to step 1, as illustrated in Fig. 6.6. Now consider state
3, which has not been removed in step 0, since it was in the same
equivalence classBaBaBa as state 5, and they are marked differently. However
with state 5 removed, the state 3 is no longer ambiguous to supervisor 2,
since all states in the class AaAaAa are marked identically as 3.

AbAbAb AcAcAc

BaBaBa BbBbBb

333

DDD

111

EEE

222

DDD

Figure 6.6: Step 1 of the algorithm on the example.

From supervisor 2’s point of view, it “knows” that supervisor 1 has the
intention to enforce the desired control requirement at state 5, with
the control decision enable0, hence supervisor 2 no longer has to worry
about state 5, and can focus on the remaining states in BaBaBa. Since the
states remaining in BaBaBa are all marked DDD, hence supervisor 2 now can
unambiguously realize that a disable decision is in order. But supervisor
2 could not have resolved the prior ambiguity if supervisor 2 did not
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AaAaAa AbAbAb AcAcAc

BaBaBa BbBbBb BcBcBc

555

EEE

5′5′5′ 333

DDD

3′3′3′ 111

EEE

1′1′1′ 222

DDD

2′2′2′ 444

EEE

4′4′4′
preprocess−−−−−→

AaAaAa AbAbAb AcAcAc

BaBaBa BbBbBb BcBcBc

555

EEE

333

DDD

111

EEE

222

DDD

444

EEE

step1−−−→

AbAbAb AcAcAc

BaBaBa BbBbBb

333

DDD

111

EEE

222

DDD

step2−−−→

AbAbAb

BbBbBb

111

EEE

step3−−−→

 blank


Figure 6.7: Complete trace of the algorithm running on the example.

know that the correct control decision would be enforced at state 5 by
supervisor 1 with the control decision enable0.

Hence in order not to step on the toes of supervisor 1, supervisor 2
should issue a disable command weaker than enable0. While any
number larger than 0 could be a candidate, supervisor 2 sees that just
as it relied on supervisor 1’s enable0 decision, which is determined at
step 0, its decision at the current step, step 1, might also be relied on in
later steps. Hence, supervisor 2 should put its decisions under priority 1,
and therefore would issue the control decision disable1 at all states in
BaBaBa, including the state 5 removed in the previous step.

With this example, we conclude the following principle determining the
appropriate priority of a control decision: to save us the problem of
having to keep tracking the priorities of decisions determined at every
step i, we can simply issue decisions with priority i, as the example has
demonstrated that doing so is adequate.

Coming back to the example, with taking the global point of view, since
state 5 is removed in step 0, a control decision with lower level of
ambiguity is issued by supervisor 1 (namely, enable0), hence supervisor
2’s decision disable1 is overridden and not effective. That decision of
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supervisor 2 is guaranteed to be effective, however, at state 3, since no
lower-level decision will be issued at that state, as otherwise state 3
would have already been removed prior to step 1.

Continuing the algorithm on the example until termination, we obtain
Fig. 6.7, and all states have been removed, meaning that at least a
supervisor can make a non-abstain decision at every state. For each
(supervisor, state) pair to which we have not explicitly assigned a deci-
sion, assign abstain, so that the fused decisions remain as intended.

Neither our example (Fig. 6.2) nor the original example by Kumar
and Takai [KT07, Fig. 1] illustrates a situation in which a supervisor
needs to issue an abstain decision. As a supplement, we add, for
the sake of conciseness, not a complete example with the plant and
observable/controllable events specified, but only a snapshot of the
algorithm, to illustrate when an abstain decision would be used.

Consider Fig. 6.8. Since both states 1 and 2 are eligible for removal at
this point, after executing one step of the algorithm, the equivalence
class AaAaAa becomes empty. What makes the situation special is that the
last removal making a class empty is not due to the unambiguity of
the corresponding supervisor of that class. In the previous example
(Fig. 6.4), the set BaBaBa becomes empty when state 3 is removed, and
the removal of that state is due to the fact that all remaining states
in BaBaBa (namely, state 3), are marked consistently (namely, by DDD). In
contrast, the last removal resulting in the set AaAaAa becoming empty in
Fig. 6.8 removes states 1 and 2, however, they are marked differently to
supervisor 1.
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AaAaAa

BaBaBa BbBbBb

111

DDD

222

EEE

Figure 6.8: A situation where the control decision abstain is issued.

Since both states 1 and 2 in Fig. 6.8 are removed due to supervisor 2’s
confidence, this step of the algorithm assigns non-abstain decisions to
supervisor 2 at those two states. On the other hand, since the set AaAaAa

is also effectively removed, we have to assign some decision at states
in the set AaAaAa (including not only states 1 and 2 but also states removed
from AaAaAa in the previous steps). By our previous argument, assigning
to supervisor 1 either decision enable or disable with an index smaller
than the number of the current step is an adequate choice, since either
way supervisor 1’s decision will have no effect on shaping the fused
decisions. Hence strictly speaking we do not need a distinct abstain
decision. Still, it is beneficial to use the abstain decision to distinguish
such special cases from the cases where the regular enable and disable
decisions are needed.

Therefore, we see, whenever the algorithm terminates, either all states
have been removed, in which case the problem is solvable, and in fact
a solution is produced; or some states are left but all remain ambigu-
ous, in which case our algorithm produces no solution for the given
implementation of G.

At this point, we can informally summarize, that if the algorithm ter-
minates with all states removed, then at every state, a unique minimal
non-abstain decision is issued, and hence the synthesized supervision
must— by construction— be admissible.

Now we turn back to and elaborate on the difference between our sets
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6C Visualization

of states Dk(σ), Ek(σ) and the languages D′
k(σ), E

′
k(σ) [KT07; TK08].

Since both D0(σ) and E0(σ) are finite, our computation eventually
converges. On the other hand, with D′

0(σ) and E ′
0(σ) potentially being

infinite, the computation does not always converge. This difference is
due to the fact that our algorithm does not exploit the ability to unfold
cycles in the plant automaton, whereas when the algorithm of Kumar
and Takai does [KT07; TK08], its computation may not converge in a
finite number of steps. Recall that given a specific plant specification G,
our algorithm constructs the automaton G′ = G× P1(G)× · · · × Pn(G)
and the computation of Dk(σ) and Ek(σ) can be thought as removing
all strings leading into an eligible state of G′ at once, by gradually
restricting to subsets of the states of G′, whereas the computation of
D′

k(σ) and E ′
k(σ) can remove fewer strings at once, and thus can be

regarded as unfolding cycles in the plant during the computation.

Indeed, our algorithm could be augmented with the capability of unfold-
ing cycles, by iteratively computing the automata Gk+1 = Gk×P1(G

k)×
· · · × Pn(G

k), where G0 = G, until convergence (which does not always
happen), and then proceed to the described computations of Dk(σ) and
Ek(σ). We then face two questions. Does unfolding cycles in this way
allow our algorithm to solve more problems? Furthermore, is it ever
necessary to unfold cycles? The answer to these questions is unknown.
Having the answer “No” to the second question would be ideal, and a suf-
ficient condition would be if our algorithm is specification-independent,
i.e., given two behaviourally equivalent plant specifications G and H
(so that L(G) = L(H)), if our algorithm terminates with a solution for
G, it also terminates with a solution for H. Moreover, if our algorithm
is indeed specification-independent, then it is equivalent to the original
algorithm of Kumar and Takai [KT07; TK08] (in the sense that when
one gives a solution, the other also does), which means we can avoid
diverging computations entirely. However, whether our algorithm is
specification-independent is unknown.
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6D Conclusions

This chapter presents a visualization of the synthesis of supervisors
in the inference-based decentralized supervisory architecture [KT07;
TK08]. The visualization provides an alternative interpretation to the
number N in the “N -inferencing architecture”. Instead of being the
highest level of ambiguity one would like to permit when solving a
decentralized supervisory problem, the number N denotes the highest
level of ambiguity inherently present in the system, so that if one de-
sires to solve the problem at all, one must permit at least N levels of
ambiguities during the inference.

The visualization provides more accessible intuition of the nature of
“inferencing”. We are now able to discuss the supervision informally
with phrases such as “supervisor 1 knows that supervisor 2 knows . . . ”.
This notion of reasoning about knowledge can be formalized in the same
way as done in our earlier work [RR23].
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7 Equivalence of Decentralized
Observation, Diagnosis, and
Control Problems in Discrete-
event Systems

This chapter demonstrates an equivalence between observation prob-
lems, control problems (with partial observation), and diagnosis prob-
lems of decentralized discrete-event systems, namely, the three classes
of problems are Turing equivalent, as one class Turing reduces to an-
other.

The equivalence allows decomposition of a control problem into a col-
lection of simpler control sub-problems, which are each equivalent to
an observation problem; and similarly allows converting a diagnosis
problem to a formally simpler observation problem. Since observation
problems in their most general formulation have been shown to be unde-
cidable in previous work, the equivalence produced here demonstrates
that control problems are also undecidable; whereas the undecidability
of diagnosis problems is a known result.

7A Introduction

Most research in discrete-event systems (DES) falls into two categories:
those concerning closed-loop systems such as control problems, and
those concerning open-loop systems, such as observation problems and
diagnosis problems.
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plant

control 
decision

(decentralized) 
controller

plant

(decentralized) 
observer

verdict

Figure 7.1: Left: open-loop systems. Right: closed-loop systems.
Adapted from [Tri].

For a discrete-event system plant, a closed-loop system is formed by
imposing supervisory control over the plant. A control problem asks for
a supervisory control policy so that the closed-loop system meets some
prescribed properties. The scheme of control problems is illustrated in
Fig. 7.1.

Studies of control problems began with the seminal work of Ramadge
and Wonham [RW87]. Partial observations [LW88] and decentralized
supervision [Cie+88; RW92] were introduced in subsequent studies.
Cieslak et al. [Cie+88] and Rudie and Wonham [RW92] initially intro-
duced decentralized supervision under a constraint of available local
control decisions and how overall control decisions are fused from the
local ones. That constraint has been gradually relaxed [PKK97; YL02;
YL04; KT05; CK11] over the past few decades.

On the other hand, open-loop systems take different forms. A concrete
example is diagnosis problems [Sam+95; DLT00; ST02; QK06; WYL07]
that seek distinguishing strings contain “faulty” events within a bounded
delay of the occurrence of the faulty events. On the other hand, a more
abstract example is observation problems that seek distinguishing strings
from a prescribed collection. The earliest formalization of observation
problems, as known to the author, is by Tripakis [Tri04]. The scheme of
open-loop systems is illustrated in Fig. 7.1.
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7B Observation Problem

The three classes of problems, control, diagnosis, and observation,
seem to be unrelated. Control problems concern closed-loop behaviour,
whereas diagnosis problems allow a delay for the correct verdicts to be
made, but observation problems do not. Therefore, the three classes of
problems are usually studied separately.

However, results for one of the classes of problems have often been
adopted to one of the other classes of problems. This suggests that there
is a mutual connection between the three classes of problems. This
document is intended to establish such connection as an equivalence
between the three classes of problems.

7B Observation Problem

An observation problem seeks to distinguish strings in a set K, where
K ⊆ L, from strings in L − K. Formally, an observation problem is
specified as follows. Given alphabet Σ and subalphabets Σi,o ⊆ Σ called
the observed alphabets, natural projections Pi : Σ

∗ → Σi,o, for agents
i ∈ N = { 1, . . . , n }, and given languages K ⊆ L ⊆ Σ∗, the observation
problem is to construct observers fi and a fusion rule f , such that

∀ s ∈ L.

s ∈ K ⇒ f(f1P1(s), . . . , fnPn(s)) = 1

∧ s ∈ L−K ⇒ f(f1P1(s), . . . , fnPn(s)) = 0

(7.1)

An instance of the observation problem, Obs, is denoted by O(L,K, {Σi,o }i∈N )
or more simply, O(L,K,Σi,o).

If the fusion rule f is given as part of the problem, then the instance
is denoted by O(f, L,K,Σi,o). Such problems are instance of the f -
observation problem, or f -Obs.
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Solvability of observation problems is known to be undecidable [Tri04].

We will show that diagnosis problems and control problems are both
equivalent to observation problems.

7C Diagnosis Problem

The diagnosis problems were first studied in the centralized case by
Sampath et al. [Sam+95], and extended to the decentralized cases
[DLT00; ST02; QK06; WYL07].

A diagnosis problem seeks to identify strings containing special events,
known as “faulty events”, within a bounded delay of time. Formally,
a diagnosis problem is specified as follows. Given alphabet Σ and
subalphabets Σi,o ⊆ Σ called the observed alphabets, natural projections
Pi : Σ

∗ → Σi,o, for agents i ∈ N = { 1, . . . , n }. For a fault alphabet
Σf ⊆ Σuo = Σ −

⋃
i Σio, a language L, say a string s ∈ L is positive

(faulty) if s contains at least one symbol from Σf , and otherwise is
negative. We may assume that there is a single fault event σf as this
assumption is inconsequential to the hardness of the problem.

For a faulty string s, if s = πσfτ for some strings π and τ , where |τ | ≥ m,
we say that s is faulty for at least m steps. In other words, a string st is
faulty for at least m steps if s is faulty and |t| ≥ m.

Then the diagnosis problem is, given an upper bound of delay as an
integer m, construct observers fi and a fusion rule f , such that

∀ s ∈ L.

s is positive for at least m steps ⇒ f(f1P1(s), . . . , fnPn(s)) = 1

∧ s is negative ⇒ f(f1P1(s), . . . , fnPn(s)) = 0
(7.2)
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7C Diagnosis Problem

That is, faulty strings are diagnosed after at most m steps of the fault.

The problem statement above is a simplification: A subtlety in the
problem statement is that there may exist a faulty string s ∈ L that
is positive for less than m steps but has no extension in L which is
positive for at least m steps. Since we nonetheless want to diagnose
such faulty strings, the phrase “s is positive for at least m steps” should
be augmented to include such strings.

An instance of diagnosis problem, Dx, is denoted by D(L, {Σi,o }i∈N , σf ,m)
or more simply, D(L,Σi,o, σf ,m).

If the fusion rule f is given as part of the problem, then the instance
is denoted by D(f, L,Σi,o, σf ,m). Such problems are instance of the
f -diagnosis problem, or f -Dx.

7C1 Equivalence of Diagnosis Problems and Observation
Problems

Theorem 7C1.1
Given a fusion rule f , the class of f -diagnosis problems— f -Dx— re-
duces to the class of f -observation problems— f -Obs.

Proof. For a given f -diagnosis problem D(f, L,Σi,o, σf ,m), construct
the following f -observation problem O(f, L,K,Σi,o), where K = { s ∈
L | s is positive forat least m steps }.

By construction, (7.1) and (7.2) coincide. □

Theorem 7C1.2
Given a fusion rule f , f -Obs reduces to f -Dx.

Proof. For a given f -observation problem O(f, L,K,Σi,o), construct the
following f -diagnosis problem D(f, L′,Σi,o, σf , 0), where L′ = (L−K)∪
{ sσf | s ∈ K } and where we have chosen m = 0.
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Notice that negative strings in L′ are exactly strings in L − K, and a
string in L′ that is positive (for at least 0 steps) — i.e., one in { sσf |
s ∈ K }— uniquely corresponds to a string s ∈ K and satisfies s′ = sσf ,
hence Pi(s) = Pi(s

′σn
f ) = Pi(s

′). Thus, by construction, (7.1) and (7.2)
coincide. □

Theorem 7C1.3
The classes of problems f -Obs and f -Dx are equivalent. Moreover, Obs
and Dx are equivalent.

Proof. By Thms. 7C1.1 and 7C1.2. □

It is known that solvability of diagnosis problems is undecidable [ST02].
The reduction Thm. 7C1.1 offers an alternative route to proving that
undecidability. Namely, we showed that observation problems reduce to
diagnosis problems, and from Tripakis [Tri04] we know that observation
problems are undecidable.

7D Control Problem

Recall that the control problem is to construct controllers fσ
i and fusion

rules fσ, for each event σ ∈ Σc, such that

∀ s ∈ K .

sσ ∈ K ⇒ fσ(fσ
1 P1(s), . . . , f

σ
nσ
Pnσ(s)) = 1

∧ sσ ∈ L−K ⇒ fσ(fσ
1 P1(s), . . . , f

σ
nσ
Pnσ(s)) = 0

(7.3)

To avoid trivial unsolvable instances, we assume that an instance is
always controllable.

An instance of control problem, Con, is denoted by C(L,K, {Σi,o }i∈N ,
{Σi,c }i∈N ), or more simply, C(L,K,Σi,o,Σi,c).
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7D Control Problem

7D1 Equivalence of Control Problems and Observation
Problems

We first revise the problem specification of the control problems.

Theorem 7D1.1
Define the following two languages

Lσ = { s ∈ K | sσ ∈ L }
Kσ = { s ∈ K | sσ ∈ K }.

(7.4)

Then (7.3) is equivalent to

∀σ ∈ Σc, s ∈ Lσ .

s ∈ Kσ ⇒ f(fσ
1 P1(s), . . . , f

σ
nσ
Pnσ(s)) = 1

∧ s ∈ Lσ −Kσ ⇒ f(fσ
1 P1(s), . . . , f

σ
nσ
Pnσ(s)) = 0.

(7.5)

Proof. By definition, for all s ∈ Lσ,

sσ ∈ L−K ⇔ s ∈ Lσ −Kσ.

This concludes the proof. □

Theorem 7D1.2
The classes of problems Con reduces to Obs

Proof. For a given control problem C(L,K,Σi,o,Σi,c), construct the
following observation problems

{O(Lσ, Kσ, {Σi,o }i∈Nσ) }σ∈Σc .

By construction, (7.1) and (7.5) coincide. □

From the proof we can see that it is appropriate to decompose a control
problem into a collection of individual (control) sub-problems, each one
dealing with a specific event.
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Theorem 7D1.3
The class of problems Obs reduces to Con′.

Proof. For a given observation problem O(L,K,Σi,o), construct a con-
trol problem as follows. First add to the alphabet a distinguished letter
γ, and let Σi,c = { γ } for all i ∈ N . Henceforth, let pr(M) stands for the
prefix-closure of language M . Now let

L′ := pr(Lγ)

= pr(L) ∪ Lγ
K ′ := pr(Kγ ∪ L)

= pr(K) ∪Kγ ∪ pr(L).

The control problem is then

C(L′, K ′,Σi,o,Σi,c).

It should be verified that the control problem is well-posed. First, it is
clear that L′ and K ′ are indeed prefix-closed. To verify controllability, let
Σ be the alphabet of L, and hence Σuc = Σ. Then, for any σ ∈ Σuc and
string s ∈ K ′, suppose that sσ ∈ L′. If sσ ∈ pr(L), sσ ∈ K ′ as desired. If
sσ ∈ Lγ, then σ = γ, which contradicts the fact that γ is a controllable
event.

Now compute the languages in (7.4). First, we have

L′
γ = { s ∈ K ′ | sγ ∈ L′ }
= { s ∈ K ′ | sγ ∈ pr(L) ∪ Lγ }
= { s ∈ K ′ | s ∈ L }
= L

where the third line is due to γ being a distinguished letter that is not in
L, and consequently not in pr(L); the fourth line is due to the facts that
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L ⊆ Kγ ∪ L ⊆ pr(Kγ ∪ L) = K ′. Similarly, we have

K ′
γ = { s ∈ K ′ | sγ ∈ K ′ }
= { s ∈ K ′ | sγ ∈ pr(K) ∪Kγ ∪ pr(L) }
= { s ∈ K ′ | s ∈ K }
= K

where the third line is due to γ being a distinguished letter that is
not in L, and also K being a subset of L. The last line is due to
K ⊆ pr(K) ⊆ K ′. Then (7.5) coincides with (7.1). □

Theorem 7D1.4
The classes of problems Obs and Con are equivalent.

Proof. By Thms. 7D1.2 and 7D1.3. □

The approach of Lin and Wonham [LW88] in dealing with centralized
control problems under partial observation can be interpreted as a
special case of the reduction of control problems to observation problems
(i.e., CON ≤T OBS).

Corollary 7D1.5
Solvability of control problems are undecidable in general.

Proof. We have just shown that the observation problems reduces to
control problems, whereas Tripakis demonstrated that solvability of
observation problems is undecidable [Tri04]. □

Corollary 7D1.5 only states the undecidability of control problems when
no restriction is placed on the fusion rule. However, in special cases
when the fusion rule is restricted, such as for the architecture given by
Cieslak et al. [Cie+88] and Rudie and Wonham [RW92], solvability can
still be decided [RW95].
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8 A Uniform Treatment of
Architectures in Decentralized
Discrete-Event Systems

Solutions to decentralized discrete-event systems problems are charac-
terized by the way local decisions are fused to yield a global decision.
A fusion rule is colloquially called an architecture. This chapter pro-
vides a uniform treatment of architectures in decentralized discrete-
event systems. Current approaches neither provide a direct way to
determine problem solvability conditions under one architecture, nor
a way to compare existing architectures. Determining whether a new
architecture is more general than an existing known architecture relies
on producing examples ad hoc and on individual inspiration that puts
the conditions for solvability in each architecture into some form that
admits comparison. From these research efforts, a method based on
morphisms between graphs has been extracted to yield a uniform ap-
proach to decentralized discrete-event system architectures and their
attendant fusion rules. This treatment provides an easy and direct way
to compare the fusion rules — and hence to compare the strength or
generality of the corresponding architectures.

8A Introduction

Many solutions of varying levels of strengths exist for decentralized su-
pervisory control problems [Cie+88; RW92; PKK97; YL02; YL04; KT05;
CK11; RM13; RR22c]. The solutions are given under various architec-
tures, whereby an architecture is characterized by the way decentralized
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decisions are combined according to some mathematical function called
a fusion rule. The breadth of an architecture is essentially represented by
the class of problems solvable under that architecture. One architecture
is more general than the other if the class of problems solvable under
the former is greater than that solvable under the latter. Taking control
problems as an example, since a common goal of control problems is
to produce solutions that generate as large a set of behaviours as pos-
sible (or that are minimally restrictive), DES research in decentralized
systems has as one of its aims to investigate novel architectures that are
more general than existing ones.

In a few simpler settings what distinguishes one architecture from
another can be interpreted as how conflicting decisions are resolved.
In a broader set of settings epistemic interpretations are given [RR00;
RR07; RR21; RR22c]. However there does not appear to be a uniform
interpretation of the differences.

The traditional approach to investigating new, perhaps more general,
architectures always proceeds in a similar manner. First, a novel archi-
tecture is proposed, often by augmenting or modifying an existing one.
Then, a characterization for decentralized problems to have solutions
under the novel architecture is given. If it is intended to demonstrate
that the novel architecture is possibly more general to some existing
architecture, one shows that the problem solvability characterization
of the novel architecture logically entails that of the existing architec-
ture. To demonstrate that the new architecture is not superfluous, one
provides an example that shows that the class of problems solvable
under the new architecture is strictly larger than that solvable under
the existing architecture. Sometimes the novel architecture turns out to
be incomparable to existing ones. An example of this would be the dis-
junctive architecture [PKK97], which was shown by Yoo and Lafortune
[YL02] to be incomparable to the prior conjunctive architecture [RW92]
first used in decentralized DES control problems.

The traditional approach is complicated. First, the problem solvability
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characterization is usually presented with little insight provided to indi-
cate how it was derived. The same remark applies to the presentation
of the example problem. Moreover, the approach is indirect and can be
laborious.

This chapter gives a uniform interpretation for decentralized architec-
tures, and proposes a uniform and simple approach that lends itself
easily to direct comparison of decentralized architectures.

8B Decentralized Problems

For simplicity of discussion, we shall concern ourselves with the follow-
ing kind of decentralized observation problems, since it has been shown
that the observation problems and the seemingly more complicated
control problems are in fact equivalent [RR22a]. Hence focusing on just
the observation problems simplifies discussions.

Problem 8B.1 (Decentralized Discrete-Event Systems Observation
Problem)
Given alphabet Σ and subalphabets Σi,o ⊆ Σ called the observed alpha-
bets, natural projections Pi : Σ

∗ → Σ∗
i,o, for agents i ∈ N = { 1, . . . , n },

and given languages K ⊆ L ⊆ Σ∗, the observation problem is to con-
struct local decision functions fi (also informally called observers/agents)
and a fusion rule f , such that

∀ s ∈ L.

s ∈ K ⇒ f(f1P1(s), . . . , fnPn(s)) = 1

∧ s ∈ L−K ⇒ f(f1P1(s), . . . , fnPn(s)) = 0.

Informally, the quintessential decentralized observation problem is about
producing local decisions that ensure that when those decisions are
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fused, strings that are in some prescribed subset K of L can be distin-
guished from strings that are not in K.

Throughout this chapter, we will need the following notations to handle
functions on n-tuples.

Definition 8B.2
For n functions g1, . . . , gn : A → B, define the broadcasting application
(as broadcasting x ∈ A to each gi) as

⟨g1, . . . , gn⟩ : A → Bn

= x 7→ (g1(x ), . . . , gn(x ))

and the element-wise application (of xi and gi) as

(g1, . . . , gn) : A
n → Bn

= (x1, . . . , xn) 7→ (g1(x1), . . . , gn(xn))

For compactness, we may write ⟨g1, . . . , gn⟩(x) as ⟨gi⟩x and (g1, . . . , gn)(x)
as (gi)x.

Since we frequently need to consider when two strings are “indistin-
guishable”, we make use of the following definitions.

Definition 8B.3 (Kernel of a Function)
The kernel of a function f , written ker f , is an equivalence relation over
the domain of f , such that (x, y) ∈ ker f wherever f(x) = f(y), i.e.,
ker f relates elements indistinguishable by f .

Definition 8B.4 (Partition of a Set)
We say that a set of sets πi is a partition of a set S whenever

⋃
πi = S,

i.e., πi covers S, and
⋂
πi = ∅, i.e., sets in πi are mutually disjoint.

Consequently, every element of S is in exactly one set of πi.

Clearly, kernels of functions over a set S correspond one-to-one with
partitions of S. Henceforth, we will identify kernels and partitions.
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Definition 8B.5
An equivalence relation R refines an equivalence relation R, written
R ≤ S, whenever (x, y) ∈ R ⇒ (x, y) ∈ S.

Speaking in terms of partitions, a partition πi refines a partition τj,
written πi ≤ τj if whenever x, y ∈ πi for some i, there is some j such
that x, y ∈ τj. Recall that sets in πi are disjoint, and similarly for τj.
Hence, in other words, πi ≤ τj iff for each i, πi ⊆ τj for some j.

For two strings s1 and s2 in L such that Pi(s1) = Pi(s2), necessarily
fiPi(s1) = fiPi(s2) for all i ∈ N . We call this fact feasibility. Fea-
sibility can be described in terms of refinement of function kernels:
ker(P1, . . . , Pn) ≤ ker(f1P1, . . . , fnPn), i.e., the first kernel refines the
second.

8C A Uniform Approach to Derive Problem
Solvability Characterization from a Given
Fusion Rule

We aim at deriving a uniform approach to compare decentralized ar-
chitectures directly. We do so by first giving a uniform way to derive
problem solvability characterization, from which we will then derive
our direct approach for comparing architectures. In our approach, we
describe a decentralized problem as an observation graph and a solu-
tion based on a fusion rule f as a decision graph. Then the problem
can be expressed as finding a way of folding the observation graph
into the decision graph, which will be formally expressed in terms of
graph morphism. Then the problem solvability condition can be thought
as determining if the decision graph has the capacity to embed the
observation graph.
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Definition 8C.1 (Observation Graph)
For each subset N ⊆ N , define the symmetric relations ∼N on L, so
that s ∼N t if and only if the two tuples ⟨Pi⟩s = (P1(s), . . . , Pn(s)) and
⟨Pi⟩t = (P1(t), . . . , Pn(t)) differ by exactly the components indexed by
N . Formally,

∼N = { (s, t) ∈ L× L | Pi(s) ̸= Pi(t) ⇔ i ∈ N }.

The relations ∼N reflect that exactly the agents in N have changed
observation. We may consider L and ∼N to form an undirected graph
(L,∼), which we will call an observation graph. We denote the obser-
vation graph also with L. We consider the graph as a complete graph
where edges are coloured by subsets of N . We also colour a node s by
the truth value of s ∈ K.

The equivalence relation ∼∅ is exactly the kernel ker⟨Pi⟩.

We provide an example of the observation graph.

Example 8C.2
Consider the observation problem with two agents where L = {a, b, ab, bb},
K = b, Σ1,o = {a} and Σ2,o = {b}. This example is derived from [RW92,
Fig. 1]. We depict the observation graph as in Fig. 8.1. Each node is la-
belled by strings s ∈ L, P1(s), and P2(s), vertically stacked in that order.
Vertical/blue/dotted lines denote relation ∼1; horizontal/red/dashed
lines denote relation ∼2; and diagonal/purple/solid lines denote rela-
tion ∼1,2. The relation ∼∅ happens to be the identity relation for this
example and is omitted from the graph. Red/singly-bordered nodes
indicate strings in L −K, and green/doubly-bordered nodes indicate
string in K.
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Figure 8.1: Observation graph for the observation problem in Exam-
ple 8C.2.

The observation graphs are essentially a more compact alternative to the
Kripke structures used in the works employing epistemic logic interpre-
tations for decentralized problems [RR00; RR07; RR21; RR22c]. The
relations ∼N capture various notions of group knowledge, e.g., what
is expressed by distributed knowledge and by the “everybody knows”
operators in epistemic logic [Fag+04].

Without loss of generality, suppose that the local decision functions fi all
have codomain D, for otherwise we can simply take D =

⋃
i∈N cdm(fi),

where cdm(fi) stands for the codomain of fi. Hence, the domain of f is
a subset of D × · · · ×D (n times).

Suppose that f is only defined over a certain collection D of combina-
tions of local decisions(d1, . . . , dn) ∈ D × · · · × D, i.e., D = dom(f) ⊆
D × · · · ×D. The size of D roughly reflects the capacity of f , so that if
|D| = 1, f is a constant 1 or 0, and if D is large enough for a problem at
hand, f is virtually unconstrained.

The size of D alone does not fully capture the capacity of the fusion rule.
What we need additionally is the following.

Definition 8C.3 (Decision Graph)
For each subset N ⊆ N , define symmetric relations ∼N on D, so that
(d1, . . . , dn) ∼N (d′1, . . . , d

′
n) exactly when the two tuples differ by exactly
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the components indexed by N . Formally,

∼N = { ((d1, . . . , dn), (d′1, . . . , d′n)) ∈ D ×D | di ̸= d′i ⇔ i ∈ N }

The relations ∼N reflect that exactly the agents in N have changed their
decisions due to their change of observation. We may consider D and
∼N to form an undirected graph (D,∼), which we will call a decision
graph. We denote the decision graph also with D. We consider the graph
as a complete graph where edges are coloured by subsets of N . We also
colour nodes by the values of f at the nodes (0 or 1).

We provide an example of the decision graph.

Example 8C.4
The traditional way of describing the conjunctive architecture is by
taking D = { 1, 0 } and f = ∧ [RW92]. For a problem with 2 agents,
the decision graph can be depicted as in Fig. 8.2. Similar to how we de-
picted the observation graph in Example 8C.2, vertical/blue/dotted lines
denote relation ∼1; horizontal/red/dashed lines denote relation ∼2; and
diagonal/purple/solid lines denote relation ∼1,2. The relation ∼∅ is the
identity relation and is omitted from the graph. Red/singly-bordered
nodes indicate fused decision being 0 and green/doubly-bordered nodes
indicate fused decision being 1.

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 8.2: Decision graph for the conjunctive architecture.

We can regard the decision graph as reflecting the capacity of the ar-
chitecture. The notion of capacity arises from the fact that solving an
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observation problem is essentially finding a way to fold the observation
graph into the decision graph. We proceed to describe such a folding
formally as a graph morphism.

The local decision functions fi can be seen as a mapping from Pi(L) to
D, subject to the following requirement. For any strings s and s′ in L,
let N be the (unique) set such that

s ∼N s′.

If
(P1(s) , . . . ,Pn(s) )

(fi)7−−→ (f1P1(s) , . . . , fnPn(s) )
= ( d1 , . . . , dn )

(P1(s
′), . . . ,Pn(s

′))
(fi)7−−→ (f1P1(s

′), . . . ,fnPn(s
′))

= ( d′1 , . . . , d′n ),

then, with letting N ′ be the set such that (d1, . . . , dn) ∼N ′ (d′1, . . . , d
′
n),

the mapping g = ⟨fiPi⟩ = s 7→ (f1P1(s), . . . , fnPn(s)) must satisfy the
following graph morphism conditions GM:

GM-1: Node-Colour Preserving

The mapping g preserves node colouring, that is, g achieves the
desired fused decision.

GM-2: Edge-Colour Intensive

N ⊇ N ′, i.e., only agents with changed observation can change
decisions, though they do not necessarily have to. In other words,
the mapping g may drop some edge colours, but may not add
any. This property captures feasibility.

Conversely, a morphism satisfying the two conditions above gives a
solution to the problem.

We capture the foregoing in the following theorem.
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Theorem 8C.5
An observation problem is solvable in a given architecture if and only if
there exists a morphism from the observation graph to the decision graph
(representing the architecture’s fusion rule) satisfying the morphism
conditions GM.

Proof. (⇒): By the discussion preceding the theorem, g satisfies GM,
as that is how the definition of GM was motivated.

(⇐): Suppose that there is a morphism g satisfying the morphism
conditions GM. Then a solution can be constructed as follows. For
each string s ∈ L, let (d1, . . . , dn) = g(s), and let fiPi(s) = di for
i ∈ N . Since g is edge-colour intensive (GM-2), the functions fi are
well-defined, i.e., if there were s and s′ such that Pi(s) = Pi(s

′), then
fiPi(s) = fiPi(s

′) = di. Since g preserves node colours (GM-1), fi solves
the problem. In other words, there must exist fi such that g = ⟨fiPi⟩.□

We provide an example illustrating Thm. 8C.5.

Example 8C.6
The problem in Example 8C.2 is solvable in the conjunctive architecture
(Example 8C.4), as we can construct the morphism depicted in Fig. 8.3.
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(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 8.3: Graph morphism from the observation graph in Fig. 8.1 to
the decision graph in Fig. 8.2.

Notice how the leftmost diagonal/purple/solid edge in the graph on
top loses its redness/horizontalness and become a vertical/blue/dotted
edge in the graph on the bottom. All other node/edge colours do not
change through the morphism.

The morphism gives a solution to the problem.

The following aspect distinguishes observation graphs from decision
graphs. The equivalence relation ∼∅ on L is ker⟨Pi⟩, whereas ∼∅ on
D is an identity relation. I.e., two distinct strings in L can be related
by ∼∅ because they have identical projections; in contrast, the only
way for two decisions in D to be related by ∼∅ is if they are identical.
However, this distinction can be removed: in the spirit of Thm. 8C.5 we
can collapse ker⟨Pi⟩ into an identity relation in advance. Then we revise
the observation graphs to be based on L/ker⟨Pi⟩ instead of L.
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Definition 8C.7 (Pre-folded Observation Graph)
Let [s] be the set of strings whose projections are the same as s. Formally,
let [s] = { t ∈ L | ⟨Pi⟩t = ⟨Pi⟩s }, i.e., [s] is the equivalence class
of s with respect to ker⟨Pi⟩. Define the relations ∼N on L/ker⟨Pi⟩
instead of directly on L, so that [s] ∼N [t] when the two tuples ⟨Pi⟩s =
(P1(s), . . . , Pn(s)) and ⟨Pi⟩t = (P1(t), . . . , Pn(t)) differ by exactly the
components indexed by N .

Moreover, since there is a natural bijection between L/ker⟨Pi⟩ and ⟨Pi⟩L,
the pre-folded observation graph can also be defined in terms of ⟨Pi⟩L.
In other words, for two strings that are indistinguishable to any agent,
nothing is lost by aggregating the nodes representing the two strings.

Notice that the relations ∼N are well-defined, as the definition does
not depend on the specific elements of the equivalence classes used
in the definition. Also, the node colouring of the graph L/ker⟨Pi⟩ is
well-defined when ker⟨Pi⟩ refines {K, L−K }, i.e., for strings s and t
in L with identical projections Pi(s) = Pi(t) for all i, s and t must either
be both from K or both not, and thus have the same colouring in the
observation graph L. Hence, whenever we discuss the graph L/ker⟨Pi⟩,
we implicitly assume that ker⟨Pi⟩ refines {K,L−K }. Recall that ker⟨Pi⟩
refining {K, L − K } is necessary for any observation problem to be
solvable.

The following remark is more easily seen if we take ⟨Pi⟩L instead of
L/ker⟨Pi⟩ as the observation graph: recall that the morphism from
the observation graph L gives g = ⟨fiPi⟩. Pre-folding L through ⟨Pi⟩
into ⟨Pi⟩L allows us to take advantage of the feasibility condition and
factor out fi from g. The forgoing is formally expressed in the following
theorem and its attendant proof.

Theorem 8C.8 (restating Thm. 8C.5 in terms of pre-folded observa-
tion graph)
An observation problem is solvable in a given architecture if and only if
the following holds:
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1. The node colouring of the graph L/ker⟨Pi⟩ is well-defined, namely,
ker⟨Pi⟩ ≤ {K,L−K }, i.e., ∀ s, t ∈ L. (∀ i ∈ N . Pi(s) = Pi(t)) ⇒
¬(s ∈ K ∧ t ∈ L−K).

2. There exists a morphism from the pre-folded observation graph
L/ker⟨Pi⟩ to the decision graph (representing the architecture’s
fusion rule) satisfying the morphism conditions GM.

Proof. Recall that since ⟨Pi⟩L is bijective to L/ker⟨Pi⟩, we can define
the pre-folded observation graph on ⟨Pi⟩L instead. Then the morphism
g is precisely (fi) (contrasting to g = ⟨fiPi⟩ in Thm. 8C.5). □

Recall that our motivation in defining the pre-folded observation graphs
is to eliminate their distinction from the decision graphs. This provides
us a mean of choosing an architecture for the solution. We have the
following result.

Theorem 8C.9
An observation problem is solvable if and only if the node colouring of
the graph ⟨Pi⟩L is well-defined, i.e., ker⟨Pi⟩ ≤ {K,L−K }.

The proof will be constructive by giving the architecture and local
agents.

Proof. By Thm. 8C.8, it suffices to take ⟨Pi⟩L as the decision graph. By
the motivation of its construction, ⟨Pi⟩L is a legitimate decision graph.
Then the required morphism is the identity mapping. □

The condition that
ker⟨Pi⟩ ≤ {K,L−K },

or more explicitly,

∀ s, t ∈ L. (∀ i ∈ N . Pi(s) = Pi(t)) ⇒ ¬(s ∈ K ∧ t ∈ L−K),
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is equivalent to

∀ s ∈ K, t ∈ L−K . ∃ i ∈ N . Pi(s) ̸= Pi(t),

by contraposition. The last expression is called Joint Observability
[Tri04]. Hence, we may call the architecture whose fusion rule is
represented by L/ker⟨Pi⟩ as the joint architecture. As a consequence
of Thm. 8C.9, the joint architecture is the most general architecture.
However, as shown by Tripakis [Tri04], the problem solvability condition
— Joint Observability— is undecidable. Nonetheless, in the cases where
Joint Observability can be asserted (for example, by a mathematical
proof), the solution can be trivially found as stated in the proof of
Thm. 8C.9.

8D A Uniform Approach to Compare Fusion
Rules

The traditional way to compare two fusion rules is by first obtaining
a characterization of problem solvability with each of the fusion rules,
and then demonstrate whether one characterization logically entails
the other. In light of the discussion in the previous section, we can
obtain a more direct way to compare fusion rules without deriving
characterizations of problem solvability first.

Recall from the previous section, there is no formal distinction between
observation graphs and decision graphs. Consequently, we have the
following result.

Theorem 8D.1
Given fusion rules f , f ′ and their respective decision graphs D, D′, the
fusion rule f ′ is more general than f if and only if there is a graph
morphism from D to D′ satisfying the graph morphism conditions GM.
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Proof. (⇐): Suppose there is a morphism g : D → D′ satisfying the
morphism conditions GM. Consider an arbitrary observation problem
solvable with the fusion rule f . By Thm. 8C.5, there is a morphism
h : L/ker⟨Pi⟩ → D from the observation graph L/ker⟨Pi⟩ to the decision
graph D satisfying the morphism conditions GM. Then g◦h : L/ker⟨Pi⟩ →
D′ is a morphism from the observation graph L/ker⟨Pi⟩ to the decision
graph D′, which clearly satisfies the morphism conditions GM, and there-
fore, by Thm. 8C.5, solves the observation problem. Thus, all problems
solvable with f are also solvable with f ′.

(⇒): Suppose that all observation problems solvable with the fusion
rule f are solvable with f ′. A morphism from D to D′ can be given as
follows. Take D as isomorphically equivalent to the observation graph of
some observation problem. Clearly the observation problem is solvable
as the identity morphism over D satisfied GM. Then the problem is also
solvable with the fusion rule f ′ by assumption. By Thm. 8C.5, there
must be a morphism h from D to D′ satisfying the morphism conditions
GM. The morphism h is what we wanted.

To see why we can consider D as an observation graph, we construct
an observation problem whose observation graph is isomorphic to D.
Recall that D ⊆ D × · · · × D. Construct the following problem. Take
Σ = { (d, i) | d ∈ D∧i ∈ N } as our alphabet, where each symbol consists
a decision d, tagged by an agent i, where (d, i) is alternatively written
as di. To enforce the desired observability, take Σi,o = { di | d ∈ D }.
Associate to each node v = (d1, · · · , dn) in D the string sv = d11 · · · · · dnn,
so that Pi(sv) = dii as desired. Let sv ∈ K if v is coloured green/doubly-
bordered, and sv ∈ L − K if v is coloured red/singly-bordered. The
association gives an isomorphism from the observation graph to the
decision graph D satisfying GM, where by “isomorphism” we mean
that the morphism is bijective and preserves edge colouring. Note that,
precisely in the case when the set of available decisions D is countably
infinite, the alphabet is countably infinite.

The need for an infinite alphabet can be eliminated, as we can encode
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symbols in an infinite alphabet in terms of a finite alphabet. Using a finite
alphabet instead however requires more sophistication in specifying the
desired observability. Since we have assumed that the decision set is
enumerable, let function ⌞·⌟ : D → N be the enumeration of decisions
in natural numbers. This enumeration function allows us to speak of
the “j-th” decision in the set D. First take Σ =

⋃
i∈N{ 0i, 1i } and

Σi,o = { 0i, 1i }. Then associate to each node v = (d1, · · · , dn) in D the
string sv = 0⌞d1⌟1 11 · · · 0⌞dn⌟n 1n, so that Pi(sv) = 0⌞di⌟i 1i. The intention of
the encoding is that 0 enumerates decisions in unary notation, 1 marks
the endings of code words, and subscripts impose observabilities. In
other words, 0⌞di⌟i means a string of 0’s of length ⌞di⌟. The idea is that if
di is the j’th decision in the set D, then it gets encoded by j 0’s followed
by 1.

Since the enumeration ⌞·⌟ is injective, the encoding di 7→ 0⌞di⌟i 1i is
also injective. Moreover, the encoding is prefix-free and hence instan-
taneously and uniquely decodable, i.e., the association to v of sv is
one-to-one. □

We illustrate the methodology in the proof of Thm. 8D.1 on the following
example. The example uses a finite decision set, so that we can display
the observation graph of our example however, the methodology is the
same for infinite but countable sets D.

Example 8D.2
The decision graph of the conjunctive architecture in Example 8C.4 can
be seen as the observation graph of the following problem. Let the
enumeration function ⌞·⌟ send the symbol 0 to the number 0 and the
symbol 1 to the number 1. With N = { 1, 2 }, let Σ = { 01, 11, 02, 12 },
Σ1,o = { 01, 11 }, and Σ2,o = { 02, 12 }. Let L = { 1112, 011112, 110212,
01110212 } and K = { 01110212 }. Then the observation graph is depicted
in Fig. 8.4.
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Figure 8.4: An observation graph that is isomorphic to the decision
graph in Fig. 8.2.

We now illustrate how two architectures can be directly compared with
our approach. We first show how one architecture can be determined to
be strictly more general than another.

Example 8D.3
Consider the architecture in which the local decisions available are
{ 0, 1, dk }, where dk stands for “don’t know”. The associated fusion
rule outputs 0 whenever a 0 local decision is present, and 1 whenever
a 1 local decision is present, and is undefined when either there are
conflicting local decisions (both 0 and 1 are present), or all supervisors
don’t know (all supervisors are confused).

This architecture is termed the C&P∧D&A architecture by Ritsuka and
Rudie [RR22c] to correspond to the C&P (conjunctive and permissive)
architecture [RW92] and the D&A architecture (disjunctive and anti-
permissive) [PKK97].

The decision graph is depicted in Fig. 8.5, where grey/dash-bordered
nodes indicate disallowed combination of local decisions.
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(0, 0)

(1, 0) (1, 1)

(dk, 0)

(1, dk)

(0, dk) (0, 1)

(dk,dk) (dk, 1)

Figure 8.5: Decision graph for the C&P∧D&A architecture.

The C&P∧D&A architecture is known to be weaker than the C&P ar-
chitecture (which we have been calling the “conjunctive architecture”).
This fact can be readily demonstrated by giving a decision graph mor-
phism. Fig. 8.6 depicts such a morphism, where for representation
purpose we no longer make use of horizontalness/verticalness to denote
edge colouring.
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(0, 0)

(dk, 0) (1, dk)

(0, dk)

(dk, 1)

(0, 0) (0, 1)

(1, 0) (1, 1)

(1, 1)

Figure 8.6: Graph morphism from the decision graph for the C&P∧D&A
architecture (bottom) to the decision graph for the C&P
architecture (top).

One can also see that there can be no morphism going in the other
direction, as there is no green/doubly-bordered node in the bottom
graph having both red/dashed and blue/dotted edges to red/singly-
bordered nodes, which is necessary for the node (1, 1) in the top graph.

The following example shows how two seemingly different architectures
can be determined to be equivalent.

Example 8D.4
An alternative way to describe the conjunctive architecture is by using
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three decisions { 0, 1, cd }, where cd is to be interpreted as a conditional
decision, so that the fusion rule outputs 1 when only the conditional
decision is present, and otherwise behaves identically to the fusion
rule in the C&P∧D&A architecture as given in Example 8D.3 (although
we renamed the decision dk to cd). The decision graph is depicted in
Fig. 8.7 without edges for compactness.

(0, 0)

(1, 0) (1, 1)

(cd, 0)

(1, cd)

(0, cd) (0, 1)

(cd,cd) (cd, 1)

Figure 8.7: Alternative decision graph for the conjunctive architecture.

It is easy to check that this architecture is indeed equivalent to the
conjunctive architecture. Since the graph would be too complex to draw,
we describe the morphisms verbally. The morphism h to the conjunctive
architecture is like the morphism from the C&P∧D&A architecture to
the conjunctive architecture as given in the previous example, where all
green/doubly-bordered nodes are sent to (1, 1). Unlike the C&P∧D&A
architecture, now we have a morphism g from the conjunctive architec-
ture: red/singly-bordered nodes are mapped by reversing h, where the
only green/doubly-bordered node (1, 1) is mapped to (cd, cd). That is, in
the C&P architecture, the decision 1 can be interpreted as a conditional
decision, which aligns with the interpretation in [RR22c].

The foregoing shows that there may exist two architectures that are
equivalent in the sense of having morphisms in both directions, for
example, the two architectures depicted in Figs. 8.2 and 8.7. However,
although the architecture in Fig. 8.7 has more nodes than that of Fig. 8.2,
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the redundancy in this case serves a purpose: the original formulation
of the conjunctive architecture by Rudie and Wonham [RW92] essen-
tially forced the decision 1 (enable) to stand for both an agent actively
enabling an event because the agent knew the event was legal, and
passively enabling the event when the agent didn’t know if the event
was legal. To understand the meaning behind agents’ behaviours, it is
useful to separate out the roles played by a decision, which is exactly
what the architecture in Fig. 8.7 does.

The following example shows how two architectures can be determined
to be incomparable.

Example 8D.5
Recall the decision graph for the conjunctive architecture in the left part
of Fig. 8.8. Compare it with the disjunctive architecture [PKK97], also
known as the D&A architecture, whose decision graph is depicted in the
right part of Fig. 8.8.

(0, 0) (0, 1)

(1, 0) (1, 1)

(0, 0) (0, 1)

(1, 0) (1, 1)

Figure 8.8: Decision graph for the conjunctive architecture recalled in
the left, with the decision graph for the disjunctive architec-
ture in the right.

One can see that there can be no morphism from left to right, as
there is no green/doubly-bordered node in the right graph having both
red/dashed and blue/dotted edges to red/singly-bordered nodes, which
is necessary for the node (1, 1) in the left graph. By a similar argument
over the node (0, 0) in the right graph, one can see that there can be
no morphism from right to left either. This is sufficient to determine
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that the conjunctive architecture and the disjunctive architecture are
incomparable. This confirms the result by Yoo and Lafortune [YL02].

8E Conclusion

We proposed two useful tools in studying decentralized observation
problems: observation graphs and decision graphs. The decision graphs
alone provide a systematic approach to directly compare decentralized
architectures. Together with observation graphs, we have systematic
approaches to derive problem solvabilities and solutions.

As we can see in the development of decentralized observation prob-
lems, the earlier works propose verifiable characterizations for problem
solvability and computable algorithms to construct solutions [Cie+88;
RW92; PKK97; YL02; YL04], but subsequent works can no longer pro-
vide computable solvability characterizations, let alone algorithms to
construct solutions [KT05; CK11]. Said differently, finding a graph mor-
phism may be hard, but verifying a witness could be easier. Specifically,
when the graphs involved are finite, the problem can be solved in non-
deterministic polynomial time, but has proofs verifiable in polynomial
time. When the graphs are infinite, the problem can be undecidable,
but proofs can be verified. This suggests that in a situation where the
solvability characterization becomes undecidable, one should attempt to
prove the characterization instead. Moreover, when a solution is “finite”
in some sense, e.g., the solution is described by finite state automata, it
remains verifiable.

In summary, fusion rules with unbounded numbers of decisions present
challenges for finding graph morphisms. Nonetheless, for fusion rules
with finite, bounded numbers of decisions, our work provides a direct
and easy approach to compare the corresponding architectures.
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9 Discussion

This chapter first summarizes the achievements of the thesis.

First, due to the equivalence of observation, control, and diagnosis
problems as demonstrated in Chapter 7, we will henceforth speak of “de-
centralized problems” and “decentralized architectures” without further
qualifications.

As demonstrated in Chapters 3 to 5, we are able to cast a number of
existing decentralized architectures in a unified framework based on
epistemic logic. The unified framework provides a more intuitive un-
derstanding of these architectures and allows one to derive solvability
conditions and solution specifications methodologically for these archi-
tectures. Chapter 6 additionally provides a visual alternative to this
formalism.

Chapter 8 proposes a graph-theoretic translation of the epistemic logic
formalism as a unifying framework. The chapter greatly simplifies the
notation-heaviness of the epistemic logic formalism, while preserving
its intuitiveness.

The work here opens up the following avenues for future research. First,
given the undecidability, one may ask if there is a suitably large decidable
subclass of problems whose solvability is decidable. On the other hand,
one may also ask if there is a suitably general architecture under which
the problem solvability is decidable. Both of the two questions above
involve a judgement of what is suitable, i.e., evaluation against real
applications. However, to the author’s knowledge, there does not exist a
benchmark of realistic problems for evaluating architectures.

Moreover, a specific problem about closed-loop systems is that if the
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9 Discussion

desired behaviour cannot be synthesized (under a prescribed architec-
ture), it is desired to modify the problem requirement and construct a
maximally-permissive (or in other words, least-restrictive) control policy
(under the same architecture). While the problem has been solved for a
few simple architectures, no work seems to have been done for the more
complicated architectures, let alone with the use of a uniform approach
to solve such problems.

The direct approach for comparing architectures provided in Chapter 8
can aid evaluating an architecture’s generality, so that one does not have
to compare architectures indirectly through their problem solvability
conditions, where the latter method may require one to come up with
a clever example to show that an architecture is strictly more general
than another. Then, one may wish to follow the approach demonstrated
in Chapter 4 to methodologically derive a problem solvability condition
and synthesize a solution for a chosen architecture. Finally, although
there is no definite solution for finding a maximally-permissive control
policy, the discussion in Chapter 3 might be a prominent starting point
for further research.
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